Federated Dynamic Client Selection for Fairness Guarantee in Heterogeneous Edge Computing

被引:0
|
作者
Mao, Ying-Chi [1 ,2 ]
Shen, Li-Juan [1 ,2 ]
Wu, Jun [1 ,2 ]
Ping, Ping [1 ,2 ]
Wu, Jie [3 ]
机构
[1] Hohai Univ, Minist Water Resources, Key Lab Water Big Data Technol, Nanjing 211100, Peoples R China
[2] Hohai Univ, Coll Comp & Informat, Nanjing 211100, Peoples R China
[3] Temple Univ, Ctr Networked Comp, Philadelphia, PA 19122 USA
关键词
federated learning fairness; computational efficiency; data distribution; client selection; client grouping;
D O I
10.1007/s11390-023-2972-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning has emerged as a distributed learning paradigm by training at each client and aggregating at a parameter server. System heterogeneity hinders stragglers from responding to the server in time with huge communication costs. Although client grouping in federated learning can solve the straggler problem, the stochastic selection strategy in client grouping neglects the impact of data distribution within each group. Besides, current client grouping approaches make clients suffer unfair participation, leading to biased performances for different clients. In order to guarantee the fairness of client participation and mitigate biased local performances, we propose a federated dynamic client selection method based on data representativity (FedSDR). FedSDR clusters clients into groups correlated with their own local computational efficiency. To estimate the significance of client datasets, we design a novel data representativity evaluation scheme based on local data distribution. Furthermore, the two most representative clients in each group are selected to optimize the global model. Finally, the DYNAMIC-SELECT algorithm updates local computational efficiency and data representativity states to regroup clients after periodic average aggregation. Evaluations on real datasets show that FedSDR improves client participation by 27.4%, 37.9%, and 23.3% compared with FedAvg, TiFL, and FedSS, respectively, taking fairness into account in federated learning. In addition, FedSDR surpasses FedAvg, FedGS, and FedMS by 21.32%, 20.4%, and 6.90%, respectively, in local test accuracy variance, balancing the performance bias of the global model across clients.
引用
下载
收藏
页码:139 / 158
页数:20
相关论文
共 50 条
  • [31] FedSCS: Client Selection for Federated Learning Under System Heterogeneity and Client Fairness with a Stackelberg Game Approach
    Yin, Tong
    Li, Lixin
    Lin, Wensheng
    Liang, Wei
    Li, Xu
    Han, Zhu
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 373 - 378
  • [32] Adaptive Clustered Federated Learning for Heterogeneous Data in Edge Computing
    Biyao Gong
    Tianzhang Xing
    Zhidan Liu
    Junfeng Wang
    Xiuya Liu
    Mobile Networks and Applications, 2022, 27 : 1520 - 1530
  • [33] Adaptive Clustered Federated Learning for Heterogeneous Data in Edge Computing
    Gong, Biyao
    Xing, Tianzhang
    Liu, Zhidan
    Wang, Junfeng
    Liu, Xiuya
    Mobile Networks and Applications, 2022, 27 (04): : 1520 - 1530
  • [34] Adaptive Clustered Federated Learning for Heterogeneous Data in Edge Computing
    Gong, Biyao
    Xing, Tianzhang
    Liu, Zhidan
    Wang, Junfeng
    Liu, Xiuya
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (04): : 1520 - 1530
  • [35] FedSAR for Heterogeneous Federated learning:A Client Selection Algorithm Based on SARSA
    Chen, Dufeng
    Jing, Rui
    Wu, Jiaqi
    Wang, Zehua
    Tian, Zijian
    Zhang, Fan
    Chen, Wei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14862 : 219 - 229
  • [36] Contextual Client Selection for Efficient Federated Learning Over Edge Devices
    Pan, Qiying
    Cao, Hangrui
    Zhu, Yifei
    Liu, Jiangchuan
    Li, Bo
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 6538 - 6548
  • [37] Mitigating bias in heterogeneous federated learning via stratified client selection
    Yazhi Liu
    Haonan Xia
    Wei Li
    Teng Niu
    Peer-to-Peer Networking and Applications, 2025, 18 (2)
  • [38] Incentive Design for Heterogeneous Client Selection: A Robust Federated Learning Approach
    Pene, Papa
    Liao, Weixian
    Yu, Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 5939 - 5950
  • [39] Value of Information: A Comprehensive Metric for Client Selection in Federated Edge Learning
    Zou, Yifei
    Shen, Shikun
    Xiao, Mengbai
    Li, Peng
    Yu, Dongxiao
    Cheng, Xiuzhen
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (04) : 1152 - 1164
  • [40] FedDCS: Federated Learning Framework based on Dynamic Client Selection
    Zou, Shutong
    Xiao, Mingjun
    Xu, Yin
    An, Baoyi
    Zheng, Jun
    2021 IEEE 18TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2021), 2021, : 627 - 632