Incentive Design for Heterogeneous Client Selection: A Robust Federated Learning Approach

被引:2
|
作者
Pene, Papa [1 ]
Liao, Weixian [1 ]
Yu, Wei [1 ]
机构
[1] Towson Univ, Dept Comp & Informat Sci, Towson, MD 21252 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 04期
关键词
Servers; Robustness; Training; Privacy; Internet of Things; Data models; Security; Data heterogeneity; distributed computing; federated learning (FL);
D O I
10.1109/JIOT.2023.3311690
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) allows the collaborative training of machine learning (ML) models between an aggregation server and different clients without sharing their private data. However, the FL archetype is mostly vulnerable to malicious model updates from various clients because of the privacy feature that makes the server see clients as a black box. When selecting clients, the server has no control on their contributions during training. This opacity of the server toward clients' data associated with the huge amount of heterogeneous data brings a security risk and poses a deterioration of the model performance in FL. The impact of client selection and data heterogeneity on FL robustness has been overlooked. In this article, we develop an incentive design for heterogeneous client selection (IHCS) to improve the performance while reducing the security risks in FL. The IHCS approach applies a smarter client selection method using cooperative game theory and dynamic clustering of clients based on their heterogeneity level to overcome the challenges of lacking access to clients' data, unbalanced data, and the lack of applicable data contribution from clients in FL. To do so, we attribute a recognition value to each client using the Shapley value. This recognition index is then used to aggregate the probability of participation level. We also implement, within the IHCS, a heterogeneity-based clustering (HIC) method that helps inhibit the negative influence of data heterogeneity and increase client contributions. Through extensive experiments with empirical results, the proposed approach outperforms the representative works on robustness of FL.
引用
收藏
页码:5939 / 5950
页数:12
相关论文
共 50 条
  • [1] An Incentive Auction for Heterogeneous Client Selection in Federated Learning
    Pang, Jinlong
    Yu, Jieling
    Zhou, Ruiting
    Lui, John C. S.
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 5733 - 5750
  • [2] Incentive Mechanism for Federated Learning With Random Client Selection
    Wu, Hongyi
    Tang, Xiaoying
    Zhang, Ying-Jun Angela
    Gao, Lin
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1922 - 1933
  • [3] Fast Heterogeneous Federated Learning with Hybrid Client Selection
    Song, Duanxiao
    Shen, Guangyuan
    Gao, Dehong
    Yang, Libin
    Zhou, Xukai
    Pan, Shirui
    Lou, Wei
    Zhou, Fang
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2006 - 2015
  • [4] Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
    Nishio, Takayuki
    Yonetani, Ryo
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [5] Adaptive client selection and model aggregation for heterogeneous federated learning
    Zhai, Rui
    Jin, Haozhe
    Gong, Wei
    Lu, Ke
    Liu, Yanhong
    Song, Yalin
    Yu, Junyang
    [J]. MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [6] Incentive Mechanism Design for Unbiased Federated Learning with Randomized Client Participation
    Luo, Bing
    Feng, Yutong
    Wang, Shiqiang
    Huang, Jianwei
    Tassiulas, Leandros
    [J]. 2023 IEEE 43RD INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS, 2023, : 545 - 555
  • [7] Learning Client Selection Strategy for Federated Learning across Heterogeneous Mobile Devices
    Zhang, Sai Qian
    Lin, Jieyu
    Zhang, Qi
    Chen, Yu-Jia
    [J]. 2024 25TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED 2024, 2024,
  • [8] Federated Learning for Heterogeneous Mobile Edge Device: A Client Selection Game
    Liu, Tongfei
    Wang, Hui
    Ma, Maode
    [J]. 2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 897 - 902
  • [9] Federated Learning With Client Selection and Gradient Compression in Heterogeneous Edge Systems
    Xu, Yang
    Jiang, Zhida
    Xu, Hongli
    Wang, Zhiyuan
    Qian, Chen
    Qiao, Chunming
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5446 - 5461
  • [10] FedSAR for Heterogeneous Federated learning:A Client Selection Algorithm Based on SARSA
    Chen, Dufeng
    Jing, Rui
    Wu, Jiaqi
    Wang, Zehua
    Tian, Zijian
    Zhang, Fan
    Chen, Wei
    [J]. ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14862 : 219 - 229