Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge

被引:0
|
作者
Nishio, Takayuki [1 ]
Yonetani, Ryo [2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Kyoto, Japan
[2] OMRON SINIC X Corp, Tokyo, Japan
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We envision a mobile edge computing (MEC) framework for machine learning (ML) technologies, which leverages distributed client data and computation resources for training high-performance ML models while preserving client privacy. Toward this future goal, this work aims to extend Federated Learning (FL), a decentralized learning framework that enables privacy-preserving training of models, to work with heterogeneous clients in a practical cellular network. The FL protocol iteratively asks random clients to download a trainable model from a server, update it with own data, and upload the updated model to the server, while asking the server to aggregate multiple client updates to further improve the model. While clients in this protocol are free from disclosing own private data, the overall training process can become inefficient when some clients are with limited computational resources (i.e., requiring longer update time) or under poor wireless channel conditions (longer upload time). Our new FL protocol, which we refer to as Fed CS, mitigates this problem and performs FL efficiently while actively managing clients based on their resource conditions. Specifically, FedCS solves a client selection problem with resource constraints, which allows the server to aggregate as many client updates as possible and to accelerate performance improvement in ML models. We conducted an experimental evaluation using publicly-available large-scale image datasets to train deep neural networks on MEC environment simulations. The experimental results show that FedCS is able to complete its training process in a significantly shorter time compared to the original FL protocol.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Federated Learning for Heterogeneous Mobile Edge Device: A Client Selection Game
    Liu, Tongfei
    Wang, Hui
    Ma, Maode
    [J]. 2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 897 - 902
  • [2] Federated Learning With Client Selection and Gradient Compression in Heterogeneous Edge Systems
    Xu, Yang
    Jiang, Zhida
    Xu, Hongli
    Wang, Zhiyuan
    Qian, Chen
    Qiao, Chunming
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 5446 - 5461
  • [3] Learning Client Selection Strategy for Federated Learning across Heterogeneous Mobile Devices
    Zhang, Sai Qian
    Lin, Jieyu
    Zhang, Qi
    Chen, Yu-Jia
    [J]. 2024 25TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED 2024, 2024,
  • [4] Energy-efficient client selection in federated learning with heterogeneous data on edge
    Zhao, Jianxin
    Feng, Yanhao
    Chang, Xinyu
    Liu, Chi Harold
    [J]. PEER-TO-PEER NETWORKING AND APPLICATIONS, 2022, 15 (02) : 1139 - 1151
  • [5] Energy-efficient client selection in federated learning with heterogeneous data on edge
    Jianxin Zhao
    Yanhao Feng
    Xinyu Chang
    Chi Harold Liu
    [J]. Peer-to-Peer Networking and Applications, 2022, 15 : 1139 - 1151
  • [6] Heterogeneous Privacy Level-Based Client Selection for Hybrid Federated and Centralized Learning in Mobile Edge Computing
    Solat, Faranaksadat
    Patni, Sakshi
    Lim, Sunhwan
    Lee, Joohyung
    [J]. IEEE ACCESS, 2024, 12 : 108556 - 108572
  • [7] Federated Transfer Learning With Client Selection for Intrusion Detection in Mobile Edge Computing
    Cheng, Yanyu
    Lu, Jianyuan
    Niyato, Dusit
    Lyu, Biao
    Kang, Jiawen
    Zhu, Shunmin
    [J]. IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 552 - 556
  • [8] Federated Learning for Energy-balanced Client Selection in Mobile Edge Computing
    Zheng, Jingjing
    Li, Kai
    Tovar, Eduardo
    Guizani, Mohsen
    [J]. IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1942 - 1947
  • [9] Joint Client Selection and Resource Allocation for Federated Learning in Mobile Edge Networks
    Luo, Long
    Cai, Qingqing
    Li, Zonghang
    Yu, Hongfang
    [J]. 2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1218 - 1223
  • [10] Probabilistic Node Selection for Federated Learning with Heterogeneous Data in Mobile Edge
    Wu, Hongda
    Wang, Ping
    [J]. 2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 2453 - 2458