The boolean average dynamics in one-dimensional lattice models with antiferromagnetic interaction

被引:0
|
作者
L. K. Bakalinskii
机构
[1] Chelyabinsk State Pedagogical University,
来源
关键词
Hubbard Model; Rotation Number; Weight Sequence; Antiferromagnetic Interaction; Polygonal Line;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Hubbard model of a one-dimensional lattice gas with antiferromagnetic interaction. The energy of the model is minimized using the Boolean average. For an arbitrary initial distribution of gas particles on the line, we show that the dependence of the gas concentration on the chemical potential is described by the Cantor stairs.
引用
收藏
页码:1453 / 1458
页数:5
相关论文
共 50 条
  • [31] Interaction quench of dipolar bosons in a one-dimensional optical lattice
    Molignini, Paolo
    Chakrabarti, Barnali
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [32] INCOMMENSURATE STRUCTURE WITH NO AVERAGE LATTICE - AN EXAMPLE OF A ONE-DIMENSIONAL QUASI-CRYSTAL
    AUBRY, S
    GODRECHE, C
    VALLET, F
    JOURNAL DE PHYSIQUE, 1987, 48 (03): : 327 - 334
  • [33] Self-trapping dynamics of excitons on a one-dimensional lattice
    Ishida, K
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 102 (04): : 483 - 491
  • [34] Delocalization and energy dynamics in a one-dimensional disordered nonlinear lattice
    dos Santos, I. F. F.
    Sales, M. O.
    Ranciaro Neto, A.
    de Moura, F. A. B. F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 560 (560)
  • [35] INCOMMENSURATE STRUCTURE WITH NO AVERAGE LATTICE - AN EXAMPLE OF ONE-DIMENSIONAL QUASI-CRYSTAL
    AUBRY, S
    GODRECHE, C
    JOURNAL DE PHYSIQUE, 1986, 47 (C-3): : 187 - 196
  • [36] Dualities in One-Dimensional Quantum Lattice Models: Topological Sectors
    Lootens, Laurens
    Delcamp, Clement
    Verstraete, Frank
    PRX QUANTUM, 2024, 5 (01):
  • [37] Heat transport behaviour in one-dimensional lattice models with damping
    Zhu, HJ
    Zhang, Y
    Zhao, H
    CHINESE PHYSICS LETTERS, 2004, 21 (11) : 2219 - 2222
  • [38] The Speed of Epidemic Waves in a One-Dimensional Lattice of SIR Models
    Sazonov, Igor
    Kelbert, Mark
    Gravenor, Michael B.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2008, 3 (04) : 28 - 47
  • [39] THE RESIDUAL ENTROPY FOR A CLASS OF ONE-DIMENSIONAL CLASSICAL LATTICE MODELS
    SLEGERS, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (17): : 3489 - 3500
  • [40] CONNECTION BETWEEN LATTICE AND CONTINUUM MODELS FOR ONE-DIMENSIONAL SYSTEMS
    ILINA, VA
    SILAEV, PK
    THEORETICAL AND MATHEMATICAL PHYSICS, 1992, 93 (02) : 1232 - 1238