The boolean average dynamics in one-dimensional lattice models with antiferromagnetic interaction

被引:0
|
作者
L. K. Bakalinskii
机构
[1] Chelyabinsk State Pedagogical University,
来源
关键词
Hubbard Model; Rotation Number; Weight Sequence; Antiferromagnetic Interaction; Polygonal Line;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Hubbard model of a one-dimensional lattice gas with antiferromagnetic interaction. The energy of the model is minimized using the Boolean average. For an arbitrary initial distribution of gas particles on the line, we show that the dependence of the gas concentration on the chemical potential is described by the Cantor stairs.
引用
收藏
页码:1453 / 1458
页数:5
相关论文
共 50 条
  • [21] Ladder operators for integrable one-dimensional lattice models
    Takizawa, MC
    Links, JR
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 417 - 420
  • [22] Fidelity susceptibility in one-dimensional disordered lattice models
    Wei, Bo-Bo
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [23] ONE-DIMENSIONAL LATTICE GAS MODELS - DIVERGENCE OF THE VISCOSITY
    DHUMIERES, D
    LALLEMAND, P
    QIAN, YH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1989, 308 (07): : 585 - 590
  • [24] Asymptotics of Gibbs measures in one-dimensional lattice models
    Nekhoroshev, N.N.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2004, (01): : 11 - 17
  • [25] CONTINUOUS ONE-DIMENSIONAL AVERAGE UNSATURATED COVERAGE AS THE LIMIT OF A LATTICE MODEL
    MALTZ, A
    MOLA, EE
    JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (10): : 5141 - 5144
  • [26] Dynamics of one-dimensional spiking neuron models
    Romain Brette
    Journal of Mathematical Biology, 2004, 48 : 38 - 56
  • [27] CRITICAL-DYNAMICS FOR ONE-DIMENSIONAL MODELS
    LEYVRAZ, F
    JAN, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (04): : 603 - 605
  • [28] ON THE CRITICAL-DYNAMICS OF ONE-DIMENSIONAL MODELS
    DROZ, M
    DASILVA, JKL
    MALASPINAS, A
    HELVETICA PHYSICA ACTA, 1986, 59 (6-7): : 1251 - 1251
  • [29] Dynamics of one-dimensional spiking neuron models
    Brette, R
    JOURNAL OF MATHEMATICAL BIOLOGY, 2004, 48 (01) : 38 - 56
  • [30] SOLITONS IN ONE-DIMENSIONAL ANTIFERROMAGNETIC CHAINS
    PIRES, AST
    TALIM, SL
    COSTA, BV
    PHYSICAL REVIEW B, 1989, 39 (10): : 7149 - 7156