An exact algorithm for solving the vertex separator problem

被引:0
|
作者
Mohamed Didi Biha
Marie-Jean Meurs
机构
[1] Université d’Avignon et des Pays de Vaucluse,Laboratoire d’Analyse Non linéaire et Géométrie (EA 2151)
[2] LMNO,Laboratoire Informatique d’Avignon (EA 931)
[3] Université de Caen,undefined
[4] Université d’Avignon et des Pays de Vaucluse,undefined
来源
关键词
Graph partitioning; Vertex separator; Polyhedral approach;
D O I
暂无
中图分类号
学科分类号
摘要
Given G = (V, E) a connected undirected graph and a positive integer β(|V|), the vertex separator problem is to find a partition of V into no-empty three classes A, B, C such that there is no edge between A and B, max{|A|, |B|} ≤ β(|V|) and |C| is minimum. In this paper we consider the vertex separator problem from a polyhedral point of view. We introduce new classes of valid inequalities for the associated polyhedron. Using a natural lower bound for the optimal solution, we present successful computational experiments.
引用
收藏
页码:425 / 434
页数:9
相关论文
共 50 条
  • [21] An improved K-OPT local search algorithm for the vertex separator problem
    Zhang, Zhiqiang
    Shao, Zehui
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (11) : 4942 - 4958
  • [22] MEAMVC: A Membrane Evolutionary Algorithm for Solving Minimum Vertex Cover Problem
    Guo, Ping
    Quan, Changsheng
    Chen, Haizhu
    IEEE ACCESS, 2019, 7 : 60774 - 60784
  • [23] Most Valuable Player Algorithm for Solving Minimum Vertex Cover Problem
    Khattab, Hebatullah
    Sharieh, Ahmad
    Mahafzah, Basel A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (08) : 159 - 167
  • [24] The min-cut and vertex separator problem
    Fanz Rendl
    Renata Sotirov
    Computational Optimization and Applications, 2018, 69 : 159 - 187
  • [25] The min-cut and vertex separator problem
    Rendl, Fanz
    Sotirov, Renata
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 69 (01) : 159 - 187
  • [26] On one exact algorithm for solving of multidimensional resource allocation problem
    Gendler, M.B.
    Zaretskij, L.S.
    Avtomatika i Telemekhanika, 1992, (06): : 138 - 145
  • [27] An exact algorithm for solving the bilevel facility interdiction and fortification problem
    Zheng, Kaiyue
    Albert, Laura A.
    OPERATIONS RESEARCH LETTERS, 2018, 46 (06) : 573 - 578
  • [28] An exact approach for the Vertex Coloring Problem
    Malaguti, Enrico
    Monaci, Michele
    Toth, Paolo
    DISCRETE OPTIMIZATION, 2011, 8 (02) : 174 - 190
  • [29] An algorithm for solving the minimum vertex ranking spanning tree problem on interval graphs
    Nakayama, SI
    Masuyama, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (05): : 1019 - 1026
  • [30] Cellular Learning Automata Based Algorithm for Solving Minimum Vertex Cover Problem
    Mousavian, Aylin
    Rezvanian, Alireza
    Meybodi, Mohammad Reza
    2014 22nd Iranian Conference on Electrical Engineering (ICEE), 2014, : 996 - 1000