An algorithm for solving the minimum vertex ranking spanning tree problem on interval graphs

被引:0
|
作者
Nakayama, SI [1 ]
Masuyama, S
机构
[1] Univ Tokushima, Fac Integrated Arts & Sci, Dept Math Sci, Tokushima 7708502, Japan
[2] Toyohashi Univ Technol, Dept Knowledge Based Informat Engn, Toyohashi, Aichi 4418580, Japan
关键词
algorithm; vertex ranking; spanning tree; interval graph;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The minimum vertex ranking spanning tree problem is to find a spanning tree of G whose vertex ranking is minimum. This paper proposes an O(n(3)) time algorithm for solving the minimum vertex ranking spanning tree problem on an interval graph.
引用
收藏
页码:1019 / 1026
页数:8
相关论文
共 50 条
  • [1] An Algorithm for Solving the Minimum Vertex Ranking Spanning Tree Problem on Interval Graphs
    Nakayama, Shin-Ichi
    Masuyama, Shigeru
    [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2003, E86-A (05) : 1019 - 1026
  • [2] An algorithm for solving the minimum vertex-ranking spanning tree problem on series-parallel graphs
    Kashem, Md. Abul
    Hasan, Chowdhury Sharif
    Bhattacharjee, Anupam
    [J]. ICECE 2006: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, 2006, : 328 - +
  • [3] Minimum Vertex Ranking Spanning Tree Problem on Permutation Graphs
    Chang, Ruei-Yuan
    Lee, Guanling
    Peng, Sheng-Lung
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, 2009, 5532 : 158 - 167
  • [4] Minimum Vertex Ranking Spanning Tree Problem on Some Classes of Graphs
    Chang, Ruei-Yuan
    Lee, Guanling
    Peng, Sheng-Lung
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2008, 5227 : 758 - 765
  • [5] A polynomial time algorithm for obtaining a minimum vertex ranking spanning tree in outerplanar graphs
    Nakayama, Shin-ichi
    Masuyama, Shigeru
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2006, E89D (08) : 2357 - 2363
  • [6] Np-hardness proof and an approximation algorithm for the minimum vertex ranking spanning tree problem
    Miyata, Keizo
    Masuyama, Shigeru
    Nakayama, Shin-ichi
    Zhao, Liang
    [J]. DISCRETE APPLIED MATHEMATICS, 2006, 154 (16) : 2402 - 2410
  • [7] A Memetic Algorithm for Solving the Generalized Minimum Spanning Tree Problem
    Pop, Petrica
    Matei, Oliviu
    Sabo, Cosmin
    [J]. SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2011, 96 : 187 - 194
  • [8] A learning automata-based heuristic algorithm for solving the minimum spanning tree problem in stochastic graphs
    Javad Akbari Torkestani
    Mohammad Reza Meybodi
    [J]. The Journal of Supercomputing, 2012, 59 : 1035 - 1054
  • [9] A learning automata-based heuristic algorithm for solving the minimum spanning tree problem in stochastic graphs
    Torkestani, Javad Akbari
    Meybodi, Mohammad Reza
    [J]. JOURNAL OF SUPERCOMPUTING, 2012, 59 (02): : 1035 - 1054
  • [10] A Parallel Genetic Algorithm for Solving the Probabilistic Minimum Spanning Tree Problem
    Wang, Zhurong
    Yu, Changqing
    Hei, Xinhong
    Zhang, Bin
    [J]. 2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2013, : 61 - 65