Identification of spatial expression trends in single-cell gene expression data

被引:0
|
作者
Daniel Edsgärd
Per Johnsson
Rickard Sandberg
机构
[1] Karolinska Institutet,Department of Cell and Molecular Biology
[2] Ludwig Institute for Cancer Research,undefined
来源
Nature Methods | 2018年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
trendsceek identifies genes with significant spatial trends in single-cell spatial expression data, as well as in low-dimensional projections of dissociated single-cell RNA-seq data.
引用
收藏
页码:339 / 342
页数:3
相关论文
共 50 条
  • [31] Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities
    Miller, Brendan F.
    Bambah-Mukku, Dhananjay
    Dulac, Catherine
    Zhuang, Xiaowei
    Fan, Jean
    GENOME RESEARCH, 2021, 31 (10) : 1843 - 1855
  • [32] Protocol to recover single-cell gene expression profiles from spatial transcriptomics data using cluster computing
    Lee, Young Je
    Chen, Hao
    Lugo, Jose
    STAR PROTOCOLS, 2025, 6 (01):
  • [33] scVAE: variational auto-encoders for single-cell gene expression data
    Gronbech, Christopher Heje
    Vording, Maximillian Fornitz
    Timshel, Pascal N.
    Sonderby, Casper Kaae
    Pers, Tune H.
    Winther, Ole
    BIOINFORMATICS, 2020, 36 (16) : 4415 - 4422
  • [34] scLink: Inferring Sparse Gene Co-expression Networks from Single-cell Expression Data
    Li, Wei Vivian
    Li, Yanzeng
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2021, 19 (03) : 475 - 492
  • [35] scINSIGHT for interpreting single-cell gene expression from biologically heterogeneous data
    Kun Qian
    Shiwei Fu
    Hongwei Li
    Wei Vivian Li
    Genome Biology, 23
  • [36] SCANPY: large-scale single-cell gene expression data analysis
    Wolf, F. Alexander
    Angerer, Philipp
    Theis, Fabian J.
    GENOME BIOLOGY, 2018, 19
  • [37] Deep learning for inferring gene relationships from single-cell expression data
    Yuan, Ye
    Bar-Joseph, Ziv
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) : 27151 - 27158
  • [38] Classification of Single-Cell Gene Expression Trajectories from Incomplete and Noisy Data
    Karbalayghareh, Alireza
    Braga-Neto, Ulisses
    Dougherty, Edward R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (01) : 193 - 207
  • [39] scAce: an adaptive embedding and clustering method for single-cell gene expression data
    He, Xinwei
    Qian, Kun
    Wang, Ziqian
    Zeng, Shirou
    Li, Hongwei
    Li, Wei Vivian
    BIOINFORMATICS, 2023, 39 (09)
  • [40] Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
    Marco, Eugenio
    Karp, Robert L.
    Guo, Guoji
    Robson, Paul
    Hart, Adam H.
    Trippa, Lorenzo
    Yuan, Guo-Cheng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (52) : E5643 - E5650