Identification of spatial expression trends in single-cell gene expression data

被引:0
|
作者
Daniel Edsgärd
Per Johnsson
Rickard Sandberg
机构
[1] Karolinska Institutet,Department of Cell and Molecular Biology
[2] Ludwig Institute for Cancer Research,undefined
来源
Nature Methods | 2018年 / 15卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
trendsceek identifies genes with significant spatial trends in single-cell spatial expression data, as well as in low-dimensional projections of dissociated single-cell RNA-seq data.
引用
收藏
页码:339 / 342
页数:3
相关论文
共 50 条
  • [21] NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport
    Moriel, Noa
    Senel, Enes
    Friedman, Nir
    Rajewsky, Nikolaus
    Karaiskos, Nikos
    Nitzan, Mor
    NATURE PROTOCOLS, 2021, 16 (09) : 4177 - 4200
  • [22] NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport
    Noa Moriel
    Enes Senel
    Nir Friedman
    Nikolaus Rajewsky
    Nikos Karaiskos
    Mor Nitzan
    Nature Protocols, 2021, 16 : 4177 - 4200
  • [23] scHLAcount: allele-specific HLA expression from single-cell gene expression data
    Darby, Charlotte A.
    Stubbington, Michael J. T.
    Marks, Patrick J.
    Barrio, Alvaro Martinez
    Fiddes, Ian T.
    BIOINFORMATICS, 2020, 36 (12) : 3905 - 3906
  • [24] MCA: Multiresolution Correlation Analysis, a graphical tool for subpopulation identification in single-cell gene expression data
    Feigelman, Justin
    Theis, Fabian J.
    Marr, Carsten
    BMC BIOINFORMATICS, 2014, 15
  • [25] MCA: Multiresolution Correlation Analysis, a graphical tool for subpopulation identification in single-cell gene expression data
    Marr, Carsten (carsten.marr@helmholtz-muenchen.de), 1600, BioMed Central Ltd, United Kingdom (15):
  • [26] MCA: Multiresolution Correlation Analysis, a graphical tool for subpopulation identification in single-cell gene expression data
    Justin Feigelman
    Fabian J Theis
    Carsten Marr
    BMC Bioinformatics, 15
  • [27] Single-cell gene expression of the bovine blastocyst
    Negron-Perez, Veronica M.
    Zhang, Yanping
    Hansen, Peter J.
    REPRODUCTION, 2017, 154 (05) : 627 - 644
  • [28] Segmentation aware probabilistic phenotyping of single-cell spatial protein expression data
    Lee, Yuju
    Chen, Edward L. Y.
    Chan, Darren C. H.
    Dinesh, Anuroopa
    Afiuni-Zadeh, Somaieh
    Klamann, Conor
    Selega, Alina
    Mrkonjic, Miralem
    Jackson, Hartland W.
    Campbell, Kieran R.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [29] Synthesising Executable Gene Regulatory Networks from Single-Cell Gene Expression Data
    Fisher, Jasmin
    Koeksal, Ali Sinan
    Piterman, Nir
    Woodhouse, Steven
    COMPUTER AIDED VERIFICATION, PT I, 2015, 9206 : 544 - 560
  • [30] Joint learning of multiple gene networks from single-cell gene expression data
    Wu, Nuosi
    Yin, Fu
    Ou-Yang, Le
    Zhu, Zexuan
    Xie, Weixin
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2583 - 2595