Data Mining with Sparse Grids

被引:0
|
作者
J. Garcke
M. Griebel
M. Thess
机构
[1] Institut für Angewandte Mathematik Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstr. 6 D-53115 Bonn Germany e-mail: garckej@iam.uni-bonn.de,
[2] Institut für Angewandte Mathematik Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstr. 6 D-53115 Bonn Germany e-mail: griebel@iam.uni-bonn.de,undefined
[3] Prudential Systems Software GmbH c/o Technologiezentrum Chemnitz Annaberger Str. 240 D-09125 Chemnitz Germany e-mail: thess@prudsys.com,undefined
来源
Computing | 2001年 / 67卷
关键词
AMS Subject Classifications: 62H30, 65D10, 68T10.; Key Words: Data mining, classification, approximation, sparse grids, combination technique.;
D O I
暂无
中图分类号
学科分类号
摘要
(hn−1nd−1) instead of O(hn−d) grid points and unknowns are involved. Here d denotes the dimension of the feature space and hn = 2−n gives the mesh size. To be precise, we suggest to use the sparse grid combination technique [42] where the classification problem is discretized and solved on a certain sequence of conventional grids with uniform mesh sizes in each coordinate direction. The sparse grid solution is then obtained from the solutions on these different grids by linear combination. In contrast to other sparse grid techniques, the combination method is simpler to use and can be parallelized in a natural and straightforward way. We describe the sparse grid combination technique for the classification problem in terms of the regularization network approach. We then give implementational details and discuss the complexity of the algorithm. It turns out that the method scales only linearly with the number of instances, i.e. the amount of data to be classified. Finally we report on the quality of the classifier built by our new method. Here we consider standard test problems from the UCI repository and problems with huge synthetical data sets in up to 9 dimensions. It turns out that our new method achieves correctness rates which are competitive to that of the best existing methods.
引用
收藏
页码:225 / 253
页数:28
相关论文
共 50 条
  • [41] Mining Skewed and Sparse Transaction Data for Personalized Shopping Recommendation
    Chun-Nan Hsu
    Hao-Hsiang Chung
    Han-Shen Huang
    [J]. Machine Learning, 2004, 57 : 35 - 59
  • [42] Sparse Malicious False Data Injection Attacks and Defense Mechanisms in Smart Grids
    Hao, Jinping
    Piechocki, Robert J.
    Kaleshi, Dritan
    Chin, Woon Hau
    Fan, Zhong
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2015, 11 (05) : 1198 - 1209
  • [43] Effective rule mining of sparse data based on transfer learning
    Sun, Yongjiao
    Guo, Jiancheng
    Li, Boyang
    Haldar, Nur Al Hasan
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (01): : 461 - 480
  • [44] A Service-Oriented Framework for Executing Data Mining Workflows on Grids
    Lackovic, Marco
    Talia, Domenico
    Trunfio, Paolo
    [J]. 2009 4TH INTERNATIONAL CONFERENCE ON GRID AND PERVASIVE COMPUTING WORKSHOPS: (GPC WORKSHOPS), 2009, : 70 - 77
  • [45] A data mining based load forecasting strategy for smart electrical grids
    Saleh, Ahmed I.
    Rabie, Asmaa H.
    Abo-Al-Ez, Khaled M.
    [J]. ADVANCED ENGINEERING INFORMATICS, 2016, 30 (03) : 422 - 448
  • [46] Domain Driven Data Mining for Unavailability Estimation of Electrical Power Grids
    Adeodato, Paulo J. L.
    Braga, Petronio L.
    Arnaud, Adrian L.
    Vasconcelos, Germano C.
    Guedes, Frederico
    Menezes, Helio B.
    Limeira, Giorgio O.
    [J]. TRENDS IN APPLIED INTELLIGENT SYSTEMS, PT II, PROCEEDINGS, 2010, 6097 : 357 - +
  • [47] Troubleshooting Thousands of Jobs on Production Grids Using Data Mining Techniques
    Cieslak, David A.
    Chawla, Nitesh V.
    Thain, Douglas L.
    [J]. 2008 9TH IEEE/ACM INTERNATIONAL CONFERENCE ON GRID COMPUTING, 2008, : 217 - 224
  • [48] A survey of dynamic replication and replica selection strategies based on data mining techniques in data grids
    Hamrouni, T.
    Slimani, S.
    Ben Charrada, F.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 48 : 140 - 158
  • [49] A data mining correlated patterns-based periodic decentralized replication strategy for data grids
    Hamrouni, Tarek
    Slimani, Sarra
    Ben Charrada, Faouzi
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2015, 110 : 10 - 27
  • [50] A Novel Sparse Attack Vector Construction Method for False Data Injection in Smart Grids
    Xia, Meng
    Du, Dajun
    Fei, Minrui
    Li, Xue
    Yang, Taicheng
    [J]. ENERGIES, 2020, 13 (11)