Data Mining with Sparse Grids

被引:0
|
作者
J. Garcke
M. Griebel
M. Thess
机构
[1] Institut für Angewandte Mathematik Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstr. 6 D-53115 Bonn Germany e-mail: garckej@iam.uni-bonn.de,
[2] Institut für Angewandte Mathematik Rheinische Friedrich-Wilhelms-Universität Bonn Wegelerstr. 6 D-53115 Bonn Germany e-mail: griebel@iam.uni-bonn.de,undefined
[3] Prudential Systems Software GmbH c/o Technologiezentrum Chemnitz Annaberger Str. 240 D-09125 Chemnitz Germany e-mail: thess@prudsys.com,undefined
来源
Computing | 2001年 / 67卷
关键词
AMS Subject Classifications: 62H30, 65D10, 68T10.; Key Words: Data mining, classification, approximation, sparse grids, combination technique.;
D O I
暂无
中图分类号
学科分类号
摘要
(hn−1nd−1) instead of O(hn−d) grid points and unknowns are involved. Here d denotes the dimension of the feature space and hn = 2−n gives the mesh size. To be precise, we suggest to use the sparse grid combination technique [42] where the classification problem is discretized and solved on a certain sequence of conventional grids with uniform mesh sizes in each coordinate direction. The sparse grid solution is then obtained from the solutions on these different grids by linear combination. In contrast to other sparse grid techniques, the combination method is simpler to use and can be parallelized in a natural and straightforward way. We describe the sparse grid combination technique for the classification problem in terms of the regularization network approach. We then give implementational details and discuss the complexity of the algorithm. It turns out that the method scales only linearly with the number of instances, i.e. the amount of data to be classified. Finally we report on the quality of the classifier built by our new method. Here we consider standard test problems from the UCI repository and problems with huge synthetical data sets in up to 9 dimensions. It turns out that our new method achieves correctness rates which are competitive to that of the best existing methods.
引用
收藏
页码:225 / 253
页数:28
相关论文
共 50 条
  • [21] A Nonlinear Matrix Decomposition for Mining the Zeros of Sparse Data
    Saul, Lawrence K.
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (02): : 431 - 463
  • [22] Privacy-preserving data mining on data grids in the presence of malicious participants
    Gilburd, B
    Schuster, A
    Wolff, R
    [J]. 13TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE DISTRIBUTED COMPUTING, PROCEEDINGS, 2004, : 225 - 234
  • [23] A novel data partitioning approach for association rule mining on grids
    [J]. Tlili, R. (raja_tlili@yahoo.fr), 1600, Science and Engineering Research Support Society, 20 Virginia Court, Sandy Bay, Tasmania, Prof B.H.Kang's Office,, Australia (05):
  • [24] Mobility extensions for knowledge discovery workflows in Data Mining Grids
    Hummel, Karin Anna
    Boehs, Georg
    Brezany, Peter
    Janciak, Ivan
    [J]. SEVENTEENTH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2006, : 246 - +
  • [25] A Novel Data Partitioning Approach for Association Rule Mining on Grids
    Tlili, Raja
    Slimani, Yahya
    [J]. INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2012, 5 (04): : 1 - 20
  • [26] List representation applied to sparse datacubes for data warehousing and data mining
    Wang, F
    Marir, F
    Gordon, J
    Helian, N
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 871 - 875
  • [27] Sparse grids: a new predictive modelling method for the analysis of geographic data
    Laffan, SW
    Nielsen, OM
    Silcock, H
    Hegland, M
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2005, 19 (03) : 267 - 292
  • [28] Low Latency Detection of Sparse False Data Injections in Smart Grids
    Akingeneye, Israel
    Wu, Jingxian
    [J]. IEEE ACCESS, 2018, 6 : 58564 - 58573
  • [29] Sparse grids, adaptivity, and symmetry
    Yserentant, H.
    [J]. COMPUTING, 2006, 78 (03) : 195 - 209
  • [30] Sampling inequalities for sparse grids
    Christian Rieger
    Holger Wendland
    [J]. Numerische Mathematik, 2017, 136 : 439 - 466