Dynamical behaviors of a delayed SIR information propagation model with forced silence function and control measures in complex networks

被引:0
|
作者
Bingwen Cao
Gui Guan
Shuling Shen
Linhe Zhu
机构
[1] Jiangsu University,School of Mathematical Sciences
[2] Hunan University,School of Mathematics
[3] Jiangsu University Hospital,undefined
[4] Jiangsu University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Due to the advanced network technology, there is almost no barrier to information dissemination, which has led to the breeding of rumors. Intended to clarify the dynamic mechanism of rumor propagation, we formulate a SIR model with time delay, forced silence function and forgetting mechanism in both homogeneous and heterogeneous networks. In the homogeneous network model, we first prove the nonnegativity of the solutions. Based on the next-generation matrix, we calculate the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_0 $$\end{document}. Besides, we discuss the existence of equilibrium points. Next, by linearizing the system and constructing a Lyapunov function, the local and global asymptotically stability of the equilibrium points are found. In the heterogeneous network model, we derive the basic reproduction number R00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{00} $$\end{document} through the analysis of a rumor-prevailing equilibrium point E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E^* $$\end{document}. Moreover, we conduct the local and global asymptotic stability analysis for the equilibrium points according to the LaSalle’s Invariance Principle and stability theorem. As long as the maximum spread rate β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is large enough, the rumor-prevailing point E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E^* $$\end{document} is locally asymptotically stable when R00>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{00}>1 $$\end{document}. Additionally, it hits that the system exists bifurcation behavior at R00=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{00}=1 $$\end{document} due to the newly added forced silence function. Later, after adding two controllers to the system, we research the problem of optimal control. Finally, aimed at authenticating the above theoretical results, a serious of numerical simulation experiments are carried out.
引用
收藏
相关论文
共 50 条
  • [41] Exponential synchronization of complex delayed dynamical networks via pinning periodically intermittent control
    Cai, Shuiming
    Hao, Junjun
    He, Qinbin
    Liu, Zengrong
    PHYSICS LETTERS A, 2011, 375 (19) : 1965 - 1971
  • [42] Exponential Synchronization of Delayed Stochastic Complex Dynamical Networks via Hybrid Impulsive Control
    Yao Cui
    Pei Cheng
    Xiaohua Ge
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (03) : 785 - 787
  • [43] An SEIR model for information propagation with a hot search effect in complex networks
    Chen, Xiaonan
    Zhang, Suxia
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 145 (01) : 1251 - 1273
  • [44] Global μ-synchronization for coupling delayed complex dynamical networks via event-triggered delayed impulsive control
    Zhang, Wei
    Xiao, Jun
    Gong, Bingyan
    ISA TRANSACTIONS, 2024, 145 : 124 - 131
  • [45] Dynamical Analysis of an SE2IR Information Propagation Model in Social Networks
    Zhang, Qian
    Li, Xianyong
    Du, Yajun
    Zhu, Jian
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [46] Model Following Adaptive Control of Complex Dynamical Networks with the Adaptive Coupling
    Li, Xiaoxiao
    Wang, Yinhe
    Li, Shengping
    2022 4TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS, ICCR, 2022, : 241 - 246
  • [47] Cluster lag synchronization of delayed heterogeneous complex dynamical networks via intermittent pinning control
    Fan Yang
    Huaqing Li
    Guo Chen
    Dawen Xia
    Qi Han
    Neural Computing and Applications, 2019, 31 : 7945 - 7961
  • [48] Pinning Controllability Scheme of Directed Complex Delayed Dynamical Networks via Periodically Intermittent Control
    Li, Shaolin
    Cao, Jinde
    He, Yinghui
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [49] Nonfragile Exponential Synchronization of Delayed Complex Dynamical Networks With Memory Sampled-Data Control
    Liu, Yajuan
    Guo, Bao-Zhu
    Park, Ju H.
    Lee, Sang-Moon
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (01) : 118 - 128
  • [50] Pinning synchronization of complex delayed dynamical networks via generalized intermittent adaptive control strategy
    Liu, Mei
    Jiang, Haijun
    Hu, Cheng
    Yu, Zhiyong
    Li, Zhanfeng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (01) : 421 - 442