Dynamical behaviors of a delayed SIR information propagation model with forced silence function and control measures in complex networks

被引:0
|
作者
Bingwen Cao
Gui Guan
Shuling Shen
Linhe Zhu
机构
[1] Jiangsu University,School of Mathematical Sciences
[2] Hunan University,School of Mathematics
[3] Jiangsu University Hospital,undefined
[4] Jiangsu University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Due to the advanced network technology, there is almost no barrier to information dissemination, which has led to the breeding of rumors. Intended to clarify the dynamic mechanism of rumor propagation, we formulate a SIR model with time delay, forced silence function and forgetting mechanism in both homogeneous and heterogeneous networks. In the homogeneous network model, we first prove the nonnegativity of the solutions. Based on the next-generation matrix, we calculate the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_0 $$\end{document}. Besides, we discuss the existence of equilibrium points. Next, by linearizing the system and constructing a Lyapunov function, the local and global asymptotically stability of the equilibrium points are found. In the heterogeneous network model, we derive the basic reproduction number R00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{00} $$\end{document} through the analysis of a rumor-prevailing equilibrium point E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E^* $$\end{document}. Moreover, we conduct the local and global asymptotic stability analysis for the equilibrium points according to the LaSalle’s Invariance Principle and stability theorem. As long as the maximum spread rate β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is large enough, the rumor-prevailing point E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E^* $$\end{document} is locally asymptotically stable when R00>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{00}>1 $$\end{document}. Additionally, it hits that the system exists bifurcation behavior at R00=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{00}=1 $$\end{document} due to the newly added forced silence function. Later, after adding two controllers to the system, we research the problem of optimal control. Finally, aimed at authenticating the above theoretical results, a serious of numerical simulation experiments are carried out.
引用
收藏
相关论文
共 50 条
  • [11] Analysis of information propagation and control of a layered SITR model in complex networks
    Pan, Dawei
    Zhang, Yuexia
    FRONTIERS IN PHYSICS, 2022, 10
  • [12] Dynamical behaviors of an epidemic model for malware propagation in wireless sensor networks
    Zhou, Ying
    Wang, Yan
    Zhou, Kai
    Shen, Shou-Feng
    Ma, Wen-Xiu
    FRONTIERS IN PHYSICS, 2023, 11
  • [13] Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks
    Huo, Jingjing
    Zhao, Hongyong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 448 : 41 - 56
  • [14] Fixed-Time Synchronization Control of Delayed Dynamical Complex Networks
    Liu, Mei
    Lu, Binglong
    Li, Zhanfeng
    Jiang, Haijun
    Hu, Cheng
    ENTROPY, 2021, 23 (12)
  • [15] A Multi-information Propagation Model on Complex Networks
    Li, Shujing
    Shao, Fengjing
    Sun, Rencheng
    Sui, Yi
    NEW TRENDS AND APPLICATIONS OF COMPUTER-AIDED MATERIAL AND ENGINEERING, 2011, 186 : 302 - 306
  • [16] An interactive propagation model of multiple information in complex networks
    Yao, Yao
    Li, Yuanyuan
    Xiong, Xi
    Wu, Yue
    Lin, Honggang
    Ju, Shenggen
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 537
  • [17] Mathematical analysis of information propagation model in complex networks
    Zhu, Linhe
    Guan, Gui
    Zhang, Zhengdi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (26):
  • [18] Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function
    Zhu, Linhe
    Liu, Wenshan
    Zhang, Zhengdi
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 370
  • [19] IMPULSIVE CONTROL AND SYNCHRONIZATION ANALYSIS OF COMPLEX DYNAMICAL NETWORKS WITH NON-DELAYED AND DELAYED COUPLING
    Tang, Jianeng
    Huang, Chengti
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2013, 9 (11): : 4555 - 4564
  • [20] Saturated impulsive control for delayed nonlinear complex dynamical networks on time scales
    Li, Liangliang
    Jiang, Wenlin
    Tu, Zhengwen
    APPLIED MATHEMATICAL MODELLING, 2023, 119 : 54 - 67