Dynamical behaviors of a delayed SIR information propagation model with forced silence function and control measures in complex networks

被引:0
|
作者
Bingwen Cao
Gui Guan
Shuling Shen
Linhe Zhu
机构
[1] Jiangsu University,School of Mathematical Sciences
[2] Hunan University,School of Mathematics
[3] Jiangsu University Hospital,undefined
[4] Jiangsu University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Due to the advanced network technology, there is almost no barrier to information dissemination, which has led to the breeding of rumors. Intended to clarify the dynamic mechanism of rumor propagation, we formulate a SIR model with time delay, forced silence function and forgetting mechanism in both homogeneous and heterogeneous networks. In the homogeneous network model, we first prove the nonnegativity of the solutions. Based on the next-generation matrix, we calculate the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_0 $$\end{document}. Besides, we discuss the existence of equilibrium points. Next, by linearizing the system and constructing a Lyapunov function, the local and global asymptotically stability of the equilibrium points are found. In the heterogeneous network model, we derive the basic reproduction number R00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{00} $$\end{document} through the analysis of a rumor-prevailing equilibrium point E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E^* $$\end{document}. Moreover, we conduct the local and global asymptotic stability analysis for the equilibrium points according to the LaSalle’s Invariance Principle and stability theorem. As long as the maximum spread rate β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is large enough, the rumor-prevailing point E∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E^* $$\end{document} is locally asymptotically stable when R00>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{00}>1 $$\end{document}. Additionally, it hits that the system exists bifurcation behavior at R00=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R_{00}=1 $$\end{document} due to the newly added forced silence function. Later, after adding two controllers to the system, we research the problem of optimal control. Finally, aimed at authenticating the above theoretical results, a serious of numerical simulation experiments are carried out.
引用
收藏
相关论文
共 50 条
  • [1] Dynamical behaviors of a delayed SIR information propagation model with forced silence function and control measures in complex networks
    Cao, Bingwen
    Guan, Gui
    Shen, Shuling
    Zhu, Linhe
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (05):
  • [2] Dynamical behaviors and event-triggered impulsive control of a delayed information propagation model based on public sentiment and forced silence
    Ma, Yuanyuan
    Xie, Leilei
    Liu, Shu
    Chu, Xinyu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (11):
  • [3] Dynamical behaviors and event-triggered impulsive control of a delayed information propagation model based on public sentiment and forced silence
    Yuanyuan Ma
    Leilei Xie
    Shu Liu
    Xinyu Chu
    The European Physical Journal Plus, 138
  • [4] Dynamical behaviors and optimal control of delayed S2IS rumor propagation model with saturated conversion function over complex networks
    Ding, Nana
    Guan, Gui
    Shen, Shuling
    Zhu, Linhe
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [5] Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks
    Chen, Shanshan
    Jiang, Haijun
    Li, Liang
    Li, Jiarong
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [6] Feedback Control in General Complex Delayed Dynamical Networks
    Tu, Lilan
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 2, PROCEEDINGS, 2009, 5552 : 1005 - 1012
  • [7] Adaptive feedback control in complex delayed dynamical networks
    Wang, L.
    Dai, H. P.
    Sun, Y. X.
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2008, 3 (06) : 667 - 672
  • [8] Dynamical Behaviors of Rumor Spreading Model with Control Measures
    Zhao, Xia-Xia
    Wang, Jian-Zhong
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [9] An SIR model with infection delay and propagation vector in complex networks
    Chengyi Xia
    Li Wang
    Shiwen Sun
    Juan Wang
    Nonlinear Dynamics, 2012, 69 : 927 - 934
  • [10] An SIR model with infection delay and propagation vector in complex networks
    Xia, Chengyi
    Wang, Li
    Sun, Shiwen
    Wang, Juan
    NONLINEAR DYNAMICS, 2012, 69 (03) : 927 - 934