Multi-animal pose estimation, identification and tracking with DeepLabCut

被引:0
|
作者
Jessy Lauer
Mu Zhou
Shaokai Ye
William Menegas
Steffen Schneider
Tanmay Nath
Mohammed Mostafizur Rahman
Valentina Di Santo
Daniel Soberanes
Guoping Feng
Venkatesh N. Murthy
George Lauder
Catherine Dulac
Mackenzie Weygandt Mathis
Alexander Mathis
机构
[1] Brain Mind Institute,Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research
[2] School of Life Sciences,Department for Molecular Biology and Center for Brain Science
[3] Swiss Federal Institute of Technology (EPFL),Department of Organismic and Evolutionary Biology
[4] Rowland Institute at Harvard,Department of Zoology
[5] Harvard University,undefined
[6] Massachusetts Institute of Technology,undefined
[7] Harvard University,undefined
[8] Howard Hughes Medical Institute (HHMI),undefined
[9] Harvard University,undefined
[10] Stockholm University,undefined
来源
Nature Methods | 2022年 / 19卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Estimating the pose of multiple animals is a challenging computer vision problem: frequent interactions cause occlusions and complicate the association of detected keypoints to the correct individuals, as well as having highly similar looking animals that interact more closely than in typical multi-human scenarios. To take up this challenge, we build on DeepLabCut, an open-source pose estimation toolbox, and provide high-performance animal assembly and tracking—features required for multi-animal scenarios. Furthermore, we integrate the ability to predict an animal’s identity to assist tracking (in case of occlusions). We illustrate the power of this framework with four datasets varying in complexity, which we release to serve as a benchmark for future algorithm development.
引用
收藏
页码:496 / 504
页数:8
相关论文
共 50 条
  • [41] MAPoseNet: Animal pose estimation network via multi-scale convolutional attention
    Liu, Sicong
    Fan, Qingcheng
    Li, Shuqin
    Zhao, Chunjiang
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 97
  • [42] Multi-modal AI Systems for Human and Animal Pose Estimation in Challenging Conditions
    Deng, Qianyi
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP, 2023, : 239 - 240
  • [43] A noise delivery system for multi-animal multi-level whole body ototoxicity studies
    Stubbs, John E.
    Slagley, Jeremy M.
    Reboulet, James E.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2015, 138 (05): : 3181 - 3187
  • [44] ScarceNet: Animal Pose Estimation with Scarce Annotations
    Li, Chen
    Lee, Gim Hee
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17174 - 17183
  • [45] Pose estimation and tracking using multivariate regression
    Thayananthan, Arasanathan
    Navaratnam, Ramanan
    Stenger, Bjoern
    Torr, Philip H. S.
    Cipolla, Roberto
    [J]. PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1302 - 1310
  • [46] Nonparametric density estimation for human pose tracking
    Brox, Thomas
    Rosenhahn, Bodo
    Kersting, Uwe G.
    Cremers, Daniel
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2006, 4174 : 546 - 555
  • [47] A hierarchical system for recognition, tracking and pose estimation
    Zehnder, P
    Koller-Meier, E
    Van Gool, L
    [J]. MACHINE LEARNING FOR MULTIMODAL INTERACTION, 2005, 3361 : 329 - 340
  • [48] Simple Baselines for Human Pose Estimation and Tracking
    Xiao, Bin
    Wu, Haiping
    Wei, Yichen
    [J]. COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 : 472 - 487
  • [49] Integrated Face Detection, Tracking, and Pose Estimation
    Miyama, Masayuki
    Matsuda, Yoshio
    [J]. PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 1056 - 1059
  • [50] PoseTrack: A Benchmark for Human Pose Estimation and Tracking
    Andriluka, Mykhaylo
    Iqbal, Umar
    Insafutdinov, Eldar
    Pishchulin, Leonid
    Milan, Anton
    Gall, Juergen
    Schiele, Bernt
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5167 - 5176