Nonparametric density estimation for human pose tracking

被引:0
|
作者
Brox, Thomas
Rosenhahn, Bodo
Kersting, Uwe G.
Cremers, Daniel
机构
[1] Univ Bonn, CVPR Grp, D-53117 Bonn, Germany
[2] MPI Comp Sci, D-66123 Saarbrucken, Germany
[3] Univ Auckland, Dept Exercise & Sport Sci, Auckland 1, New Zealand
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The present paper considers the supplement of prior knowledge about joint angle configurations in the scope of 3-D human pose tracking. Training samples obtained from an industrial marker based tracking system are used for a nonparametric Parzen density estimation in the 12-dimensional joint configuration space. These learned probability densities constrain the image-driven joint angle estimates by drawing solutions towards familiar configurations. This prevents the method from producing unrealistic pose estimates due to unreliable image cues. Experiments on sequences with a human leg model reveal a considerably increased robustness, particularly in the presence of disturbed images and occlusions.
引用
收藏
页码:546 / 555
页数:10
相关论文
共 50 条
  • [1] Nonparametric density estimation with adaptive, anisotropic kernels for human motion tracking
    Brox, Thomas
    Rosenhahn, Bodo
    Cremers, Daniel
    Seidel, Hans-Peter
    [J]. HUMAN MOTION - UNDERSTANDING, MODELING, CAPTURE AND ANIMATION, PROCEEDINGS, 2007, 4814 : 152 - +
  • [2] Simple Baselines for Human Pose Estimation and Tracking
    Xiao, Bin
    Wu, Haiping
    Wei, Yichen
    [J]. COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 : 472 - 487
  • [3] PoseTrack: A Benchmark for Human Pose Estimation and Tracking
    Andriluka, Mykhaylo
    Iqbal, Umar
    Insafutdinov, Eldar
    Pishchulin, Leonid
    Milan, Anton
    Gall, Juergen
    Schiele, Bernt
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5167 - 5176
  • [4] Learning a Tracking and Estimation Integrated Graphical Model for Human Pose Tracking
    Zhao, Lin
    Gao, Xinbo
    Tao, Dacheng
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (12) : 3176 - 3186
  • [5] NONPARAMETRIC DENSITY ESTIMATION
    WEGMAN, EJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (06): : 2226 - &
  • [6] A Top-Down Approach to Articulated Human Pose Estimation and Tracking
    Ning, Guanghan
    Liu, Ping
    Fan, Xiaochuan
    Zhang, Chi
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 227 - 234
  • [7] Nonparametric estimation of a conditional density
    Bott, Ann-Kathrin
    Kohler, Michael
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (01) : 189 - 214
  • [8] Nonparametric density and regression estimation
    DiNardo, J
    Tobias, JL
    [J]. JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 11 - 28
  • [9] Nonparametric volatility density estimation
    Van Es, B
    Spreij, P
    Van Zanten, H
    [J]. BERNOULLI, 2003, 9 (03) : 451 - 465
  • [10] Nonparametric estimation of a conditional density
    Ann-Kathrin Bott
    Michael Kohler
    [J]. Annals of the Institute of Statistical Mathematics, 2017, 69 : 189 - 214