Nonparametric density and regression estimation

被引:117
|
作者
DiNardo, J [1 ]
Tobias, JL
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Calif Irvine, Irvine, CA 92717 USA
来源
JOURNAL OF ECONOMIC PERSPECTIVES | 2001年 / 15卷 / 04期
关键词
D O I
10.1257/jep.15.4.11
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide a nontechnical review of recent nonparametric methods for estimating density and regression functions. The methods we describe make it possible for a researcher to estimate a regression function or density without having to specify in advance a particular-and hence potentially misspecified functional form. We compare these methods to more popular parametric alternatives (such as OLS), illustrate their use in several applications, and demonstrate their flexibility with actual data and generated-data experiments. We show that these methods are intuitive and easily implemented, and in the appropriate context may provide an attractive alternative to "simpler" parametric methods.
引用
收藏
页码:11 / 28
页数:18
相关论文
共 50 条