Strong convergence of an inertial Halpern type algorithm in Banach spaces

被引:0
|
作者
Sajad Ranjbar
机构
[1] Higher Education Center of Eghlid,Department of Mathematics
关键词
Fixed point; Strong convergence; Iterative methods; Halpern iteration; Accretive operator; 47H10; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we obtain the strong convergence of the new modified Halpern iteration process xn+1=αnu+(1-αn)TnP(xn+θn(xn-xn-1)),n=1,2,3,…,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x_{n+1} = \alpha _{n}u + (1-\alpha _{n})T_{n}P(x_{n} + \theta _{n}(x_{n} - x_{n-1})), \ \ \ \ \ \ n=1,2,3,\ldots , \end{aligned}$$\end{document}to a common fixed point of {Tn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ T_{n}\}$$\end{document}, where {Tn}n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ T_{n}\}_{n=1}^{\infty }$$\end{document} is a family of nonexpansive mappings on the closed and convex subset C of a Banach space X, P:X⟶C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P: X \longrightarrow C$$\end{document} is a nonexpansive retraction, {αn}⊂[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\alpha _n\} \subset [0, 1]$$\end{document} and {θn}⊂R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\theta _n\}\subset R^+$$\end{document}. Some applications of this result are also presented.
引用
收藏
页码:1561 / 1570
页数:9
相关论文
共 50 条
  • [41] On the weak and strong convergence of the proximal point algorithm in reflexive Banach spaces
    Dadashi, Vahid
    Khatibzadeh, Hadi
    OPTIMIZATION, 2017, 66 (09) : 1487 - 1494
  • [42] TWO GENERALIZED STRONG CONVERGENCE THEOREMS OF HALPERN'S TYPE IN HILBERT SPACES AND APPLICATIONS
    Takahashi, Wataru
    Wong, Ngai-Ching
    Yao, Jen-Chih
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03): : 1151 - 1172
  • [43] Strong Convergence Theorems of Halpern's Type for Families of Nonexpansive Mappings in Hilbert Spaces
    Nakajo, K.
    Shimoji, K.
    Takahashi, W.
    THAI JOURNAL OF MATHEMATICS, 2009, 7 (01): : 49 - 67
  • [44] Strong convergence of a proximal-type algorithm in a Banach space
    Kamimura, SJ
    Takahashi, W
    SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) : 938 - 945
  • [45] Strong Convergence of Modified Halpern Iterations in CAT(0) Spaces
    Cuntavepanit, A.
    Panyanak, B.
    FIXED POINT THEORY AND APPLICATIONS, 2011,
  • [46] Strong Convergence of Modified Halpern Iterations in CAT(0) Spaces
    A Cuntavepanit
    B Panyanak
    Fixed Point Theory and Applications, 2011
  • [47] Strong convergence of a general iterative algorithm for asymptotically nonexpansive semigroups in Banach spaces
    Liu, Lishan
    Liu, Chun
    Wang, Fang
    Wu, Yonghong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (10): : 5695 - 5711
  • [48] Strong Convergence Theorem of Bregman Algorithm for Solving Variational Inequalities in Banach Spaces
    Inkrong, Papatsara
    Cholamjiak, Prasit
    Wattanawitoon, Kriengsak
    Witthayarat, Uamporn
    THAI JOURNAL OF MATHEMATICS, 2024, 22 (02): : 397 - 409
  • [49] STRONG CONVERGENCE OF AN INEXACT PROXIMAL POINT ALGORITHM FOR EQUILIBRIUM PROBLEMS IN BANACH SPACES
    Mashreghi, Javad
    Nasri, Mostafa
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (09) : 1053 - 1071
  • [50] QUANTITATIVE ANALYSIS OF A HALPERN-TYPE PROXIMAL POINT ALGORITHM FOR ACCRETIVE OPERATORS IN BANACH SPACES
    Kohlenbach, Ulrich
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 2125 - 2138