Strong convergence of an inertial Halpern type algorithm in Banach spaces

被引:0
|
作者
Sajad Ranjbar
机构
[1] Higher Education Center of Eghlid,Department of Mathematics
关键词
Fixed point; Strong convergence; Iterative methods; Halpern iteration; Accretive operator; 47H10; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we obtain the strong convergence of the new modified Halpern iteration process xn+1=αnu+(1-αn)TnP(xn+θn(xn-xn-1)),n=1,2,3,…,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} x_{n+1} = \alpha _{n}u + (1-\alpha _{n})T_{n}P(x_{n} + \theta _{n}(x_{n} - x_{n-1})), \ \ \ \ \ \ n=1,2,3,\ldots , \end{aligned}$$\end{document}to a common fixed point of {Tn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ T_{n}\}$$\end{document}, where {Tn}n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{ T_{n}\}_{n=1}^{\infty }$$\end{document} is a family of nonexpansive mappings on the closed and convex subset C of a Banach space X, P:X⟶C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P: X \longrightarrow C$$\end{document} is a nonexpansive retraction, {αn}⊂[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\alpha _n\} \subset [0, 1]$$\end{document} and {θn}⊂R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\theta _n\}\subset R^+$$\end{document}. Some applications of this result are also presented.
引用
收藏
页码:1561 / 1570
页数:9
相关论文
共 50 条
  • [31] Attractive points and Halpern-type strong convergence theorems in Hilbert spaces
    Takahashi, Wataru
    Wong, Ngai-Ching
    Yao, Jen-Chih
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2015, 17 (02) : 301 - 311
  • [32] Strong convergence of Browder’s and Halpern’s type iterations in Hilbert spaces
    Kanokwan Wongchan
    Satit Saejung
    Positivity, 2018, 22 : 969 - 982
  • [33] Strong convergence of Browder's and Halpern's type iterations in Hilbert spaces
    Wongchan, Kanokwan
    Saejung, Satit
    POSITIVITY, 2018, 22 (04) : 969 - 982
  • [34] Attractive points and Halpern-type strong convergence theorems in Hilbert spaces
    Wataru Takahashi
    Ngai-Ching Wong
    Jen-Chih Yao
    Journal of Fixed Point Theory and Applications, 2015, 17 : 301 - 311
  • [35] A STRONG CONVERGENCE HALPERN-TYPE INERTIAL ALGORITHM FOR SOLVING SYSTEM OF SPLIT VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS
    Mebawondu, A. A.
    Jolaoso, L. O.
    Abass, H. A.
    Oyewole, O. K.
    Aremu, K. O.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (06): : 2762 - 2791
  • [36] Strong Convergence of Halpern Iteration for Products of Finitely Many Resolvents of Maximal Monotone Operators in Banach Spaces
    Timnak, Sara
    Naraghirad, Eskandar
    Hussain, Nawab
    FILOMAT, 2017, 31 (15) : 4673 - 4693
  • [37] ON STRONG CONVERGENCE OF PRAMARTS IN BANACH SPACES
    Saadoune, Mohammed
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2013, 33 (01): : 1 - 27
  • [38] STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR THE SPLIT EQUALITY PROBLEM IN BANACH SPACES
    Wang, Meiying
    Xu, Tongxin
    Shi, Luoyi
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [39] STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR THE SPLIT EQUALITY PROBLEM IN BANACH SPACES
    Wang, Meiying
    Xu, Tongxin
    Shi, Luoyi
    Journal of Nonlinear Functional Analysis, 2022, 2022
  • [40] STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR THE SPLIT EQUALITY PROBLEM IN BANACH SPACES
    Wang, Meiying
    Xu, Tongxin
    Shi, Luoyi
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022