On the Self-propulsion of a Rigid Body in a Viscous Liquid by Time-Periodic Boundary Data

被引:0
|
作者
Giovanni P. Galdi
机构
[1] University of Pittsburgh,Department of Mechanical Engineering and Materials Science
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Consider a rigid body, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document}, constrained to move by translational motion in an unbounded viscous liquid. The driving mechanism is a given distribution of time-periodic velocity field, v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{v}}_*$$\end{document}, at the interface body-liquid, of magnitude δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} (in appropriate function class). The main objective is to find conditions on v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{v}}_*$$\end{document} ensuring that B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} performs a non-zero net motion, namely, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} can cover any given distance in a finite time. The approach to the problem depends on whether the averaged value of v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{v}}_*$$\end{document} over a period of time is (case (b)) or is not (case (a)) identically zero. In case (a) we solve the problem in a relatively straightforward way, by showing that, for small δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, it reduces to the study of a suitable and well-investigated time-independent Stokes (linear) problem. In case (b), however, the question is much more complicated, because we show that it cannot be brought to the study of a linear problem. Therefore, in case (b), self-propulsion is a genuinely nonlinear issue that we solve directly on the nonlinear system by a contradiction argument. In this way, we are able to give, also in case (b), sufficient conditions for self-propulsion (for small δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}). Finally, we demonstrate, by means of counterexamples, that such conditions are, in general, also necessary.
引用
收藏
相关论文
共 50 条
  • [31] Self-propulsion droplet induced via periodic explosive boiling
    Cao Chun-Lei
    Xu Jin-Liang
    Ye Wen-Li
    ACTA PHYSICA SINICA, 2021, 70 (24)
  • [32] Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid
    Felderhof, B. U.
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [33] Ionic imbalance induced self-propulsion of liquid metals
    Ali Zavabeti
    Torben Daeneke
    Adam F. Chrimes
    Anthony P. O’Mullane
    Jian Zhen Ou
    Arnan Mitchell
    Khashayar Khoshmanesh
    Kourosh Kalantar-zadeh
    Nature Communications, 7
  • [34] Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives
    Shizhao Wang
    Guowei He
    Xing Zhang
    Acta Mechanica Sinica, 2016, 32 : 980 - 990
  • [35] Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives
    Shizhao Wang
    Guowei He
    Xing Zhang
    Acta Mechanica Sinica , 2016, (06) : 980 - 990
  • [36] Self-propulsion of a counter-rotating cylinder pair in a viscous fluid
    van Rees, Wim M.
    Novati, Guido
    Koumoutsakos, Petros
    PHYSICS OF FLUIDS, 2015, 27 (06)
  • [37] Navier-Stokes Flow Past a Rigid Body That Moves by Time-Periodic Motion
    Galdi, Giovanni P.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
  • [38] Merger of coherent structures in time-periodic viscous flows
    Speetjens, M. F. M.
    Clercx, H. J. H.
    van Heijst, G. J. F.
    CHAOS, 2006, 16 (04)
  • [39] The time-periodic problem of the viscous Cahn-Hilliard equation with the homogeneous Dirichlet boundary condition
    Kagawa, Keiichiro
    Otani, Mitsuharu
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [40] Self-propulsion of a planar electric or magnetic microbot immersed in a polar viscous fluid
    Felderhof, B. U.
    PHYSICAL REVIEW E, 2011, 83 (05):