On the Self-propulsion of a Rigid Body in a Viscous Liquid by Time-Periodic Boundary Data

被引:0
|
作者
Giovanni P. Galdi
机构
[1] University of Pittsburgh,Department of Mechanical Engineering and Materials Science
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Consider a rigid body, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document}, constrained to move by translational motion in an unbounded viscous liquid. The driving mechanism is a given distribution of time-periodic velocity field, v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{v}}_*$$\end{document}, at the interface body-liquid, of magnitude δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} (in appropriate function class). The main objective is to find conditions on v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{v}}_*$$\end{document} ensuring that B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} performs a non-zero net motion, namely, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} can cover any given distance in a finite time. The approach to the problem depends on whether the averaged value of v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{v}}_*$$\end{document} over a period of time is (case (b)) or is not (case (a)) identically zero. In case (a) we solve the problem in a relatively straightforward way, by showing that, for small δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, it reduces to the study of a suitable and well-investigated time-independent Stokes (linear) problem. In case (b), however, the question is much more complicated, because we show that it cannot be brought to the study of a linear problem. Therefore, in case (b), self-propulsion is a genuinely nonlinear issue that we solve directly on the nonlinear system by a contradiction argument. In this way, we are able to give, also in case (b), sufficient conditions for self-propulsion (for small δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}). Finally, we demonstrate, by means of counterexamples, that such conditions are, in general, also necessary.
引用
收藏
相关论文
共 50 条
  • [21] Spatial Decay of the Vorticity Field of Time-Periodic Viscous Flow Past a Body
    Eiter, Thomas
    Galdi, Giovanni P.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 242 (01) : 149 - 178
  • [22] Spatial Decay of the Vorticity Field of Time-Periodic Viscous Flow Past a Body
    Thomas Eiter
    Giovanni P. Galdi
    Archive for Rational Mechanics and Analysis, 2021, 242 : 149 - 178
  • [23] Time-periodic solutions to quasilinear hyperbolic systems with time-periodic boundary conditions
    Qu, Peng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 356 - 382
  • [24] Viscous Flow Past a Body Translating by Time-Periodic Motion with Zero Average
    Galdi, Giovanni P.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (03) : 1237 - 1269
  • [25] Navier–Stokes Flow Past a Rigid Body That Moves by Time-Periodic Motion
    Giovanni P. Galdi
    Journal of Mathematical Fluid Mechanics, 2022, 24
  • [26] Nonlinear Stability of Time-Periodic Viscous Shocks
    Margaret Beck
    Björn Sandstede
    Kevin Zumbrun
    Archive for Rational Mechanics and Analysis, 2010, 196 : 1011 - 1076
  • [27] Nonlinear Stability of Time-Periodic Viscous Shocks
    Beck, Margaret
    Sandstede, Bjoern
    Zumbrun, Kevin
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (03) : 1011 - 1076
  • [28] Ionic imbalance induced self-propulsion of liquid metals
    Zavabeti, Ali
    Daeneke, Torben
    Chrimes, Adam F.
    O'Mullane, Anthony P.
    Ou, Jian Zhen
    Mitchell, Arnan
    Khoshmanesh, Khashayar
    Kalantar-zadeh, Kourosh
    NATURE COMMUNICATIONS, 2016, 7
  • [29] The time-periodic problem of the viscous Cahn–Hilliard equation with the homogeneous Dirichlet boundary condition
    Keiichiro Kagawa
    Mitsuharu Ôtani
    Journal of Fixed Point Theory and Applications, 2023, 25
  • [30] Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives
    Wang, Shizhao
    He, Guowei
    Zhang, Xing
    ACTA MECHANICA SINICA, 2016, 32 (06) : 980 - 990