On the Self-propulsion of a Rigid Body in a Viscous Liquid by Time-Periodic Boundary Data

被引:0
|
作者
Giovanni P. Galdi
机构
[1] University of Pittsburgh,Department of Mechanical Engineering and Materials Science
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Consider a rigid body, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document}, constrained to move by translational motion in an unbounded viscous liquid. The driving mechanism is a given distribution of time-periodic velocity field, v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{v}}_*$$\end{document}, at the interface body-liquid, of magnitude δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} (in appropriate function class). The main objective is to find conditions on v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{v}}_*$$\end{document} ensuring that B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} performs a non-zero net motion, namely, B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {B}}$$\end{document} can cover any given distance in a finite time. The approach to the problem depends on whether the averaged value of v∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{v}}_*$$\end{document} over a period of time is (case (b)) or is not (case (a)) identically zero. In case (a) we solve the problem in a relatively straightforward way, by showing that, for small δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, it reduces to the study of a suitable and well-investigated time-independent Stokes (linear) problem. In case (b), however, the question is much more complicated, because we show that it cannot be brought to the study of a linear problem. Therefore, in case (b), self-propulsion is a genuinely nonlinear issue that we solve directly on the nonlinear system by a contradiction argument. In this way, we are able to give, also in case (b), sufficient conditions for self-propulsion (for small δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}). Finally, we demonstrate, by means of counterexamples, that such conditions are, in general, also necessary.
引用
收藏
相关论文
共 50 条
  • [1] On the Self-propulsion of a Rigid Body in a Viscous Liquid by Time-Periodic Boundary Data
    Galdi, Giovanni P.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2020, 22 (04)
  • [2] Viscous Flow Around a Rigid Body Performing a Time-periodic Motion
    Thomas Eiter
    Mads Kyed
    Journal of Mathematical Fluid Mechanics, 2021, 23
  • [3] Viscous Flow Around a Rigid Body Performing a Time-periodic Motion
    Eiter, Thomas
    Kyed, Mads
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (01)
  • [4] Self-propulsion of a Smooth Body in a Viscous Fluid Under Periodic Oscillations of a Rotor and Circulation
    Borisov, Alexey V.
    Mamaev, Ivan S.
    Vetchanin, Evgeny V.
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (7-8): : 850 - 874
  • [5] Self-propulsion of a Smooth Body in a Viscous Fluid Under Periodic Oscillations of a Rotor and Circulation
    Alexey V. Borisov
    Ivan S. Mamaev
    Evgeny V. Vetchanin
    Regular and Chaotic Dynamics, 2018, 23 : 850 - 874
  • [6] Attainability of time-periodic flow of a viscous liquid past an oscillating body
    Galdi, Giovanni P.
    Hishida, Toshiaki
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 2877 - 2890
  • [7] Attainability of time-periodic flow of a viscous liquid past an oscillating body
    Giovanni P. Galdi
    Toshiaki Hishida
    Journal of Evolution Equations, 2021, 21 : 2877 - 2890
  • [8] The self-propulsion of a body with moving internal masses in a viscous fluid
    Vetchanin, Evgeny V.
    Mamaev, Ivan S.
    Tenenev, Valentin A.
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (1-2): : 100 - 117
  • [9] The self-propulsion of a body with moving internal masses in a viscous fluid
    Evgeny V. Vetchanin
    Ivan S. Mamaev
    Valentin A. Tenenev
    Regular and Chaotic Dynamics, 2013, 18 : 100 - 117
  • [10] Self-propulsion on liquid surfaces
    Pimienta, Veronique
    Antoine, Charles
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2014, 19 (04) : 290 - 299