Affine recurrent fractal interpolation functions

被引:0
|
作者
N. Balasubramani
A. Gowrisankar
机构
[1] Vellore Institute of Technology,Department of Mathematics, School of Advanced Sciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this article, affine recurrent fractal interpolation function is constructed and its convergence analysis is established to understand the approximation properties. Besides, the existence of optimal recurrent fractal interpolation function for given continuous function is discussed. Further, shape preserving aspects of the recurrent fractal interpolation function are investigated by imposing the necessary conditions on the vertical scaling factors. Numerical examples are explored which support the theoretical results.
引用
下载
收藏
页码:3765 / 3779
页数:14
相关论文
共 50 条
  • [31] On linear transformation of generalized affine fractal interpolation function
    Attia, Najmeddine
    Amami, Rim
    AIMS MATHEMATICS, 2024, 9 (07): : 16848 - 16862
  • [32] Numerical integration of affine fractal functions
    Navascues, M. A.
    Sebastian, M. V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 252 : 169 - 176
  • [33] HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS
    BARNSLEY, MF
    ELTON, J
    HARDIN, D
    MASSOPUST, P
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) : 1218 - 1242
  • [34] Resampling and reconstruction with fractal interpolation functions
    Price, JR
    Hayes, MH
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (09) : 228 - 230
  • [35] Generalization of Hermite functions by fractal interpolation
    Navascués, MA
    Sebastián, MV
    JOURNAL OF APPROXIMATION THEORY, 2004, 131 (01) : 19 - 29
  • [36] Energy and Laplacian of fractal interpolation functions
    LI Xiao-hui
    RUAN Huo-jun
    Applied Mathematics:A Journal of Chinese Universities, 2017, 32 (02) : 201 - 210
  • [37] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    JOURNAL OF ANALYSIS, 2024, : 3197 - 3226
  • [38] Bivariate fractal interpolation functions on grids
    Dalla, L
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) : 53 - 58
  • [40] Energy and Laplacian of fractal interpolation functions
    Li Xiao-hui
    Ruan Huo-jun
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (02) : 201 - 210