The boundedness of maximal operators and singular integrals via Fourier transform estimates

被引:0
|
作者
Hong Hai Liu
机构
[1] He’nan Polytechnic University,School of Mathematics and Information Science
关键词
Maximal operators; singular integrals; Triebel-Lizorkin spaces; vector-valued inequality; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the author studies the mapping properties for some general maximal operators and singular integrals on certain function spaces via Fourier transform estimates. Also, some concrete maximal operators and singular integrals are studied as applications.
引用
收藏
页码:2227 / 2242
页数:15
相关论文
共 50 条
  • [31] Estimates for the maximal bilinear singular integral operators
    Guo En Hu
    Acta Mathematica Sinica, English Series, 2015, 31 : 847 - 862
  • [32] Estimates for the Maximal Bilinear Singular Integral Operators
    Guo En HU
    ActaMathematicaSinica, 2015, 31 (05) : 847 - 862
  • [33] Weighted Estimates for Maximal Commutators of Multilinear Singular Integrals
    Chen, Dongxiang
    Mao, Suzhen
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [34] Estimates for the maximal singular integrals without doubling condition
    Ruan J.
    Zhu X.
    Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (4) : 448 - 454
  • [35] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    Kôzô Yabuta
    Science China Mathematics, 2020, 63 : 907 - 936
  • [36] SOME WEAK TYPE ESTIMATES FOR MAXIMAL SINGULAR INTEGRALS
    Sato, Shuichi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (01): : 221 - 249
  • [37] The ρ-variation as an operator between maximal operators and singular integrals
    Crescimbeni, R.
    Macias, R. A.
    Menarguez, T.
    Torrea, J. L.
    Viviani, B.
    JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (01) : 81 - 102
  • [38] Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces
    Feng Liu
    Qingying Xue
    K?z? Yabuta
    ScienceChina(Mathematics), 2020, 63 (05) : 907 - 936
  • [39] The ρ-variation as an operator between maximal operators and singular integrals
    R. Crescimbeni
    R. A. Macías
    T. Menárguez
    J. L. Torrea
    B. Viviani
    Journal of Evolution Equations, 2009, 9 : 81 - 102
  • [40] On the boundedness of singular integrals
    Fabes, E
    Mitrea, I
    Mitrea, M
    PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (01) : 21 - 29