Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces

被引:0
|
作者
Feng Liu
Qingying Xue
Kôzô Yabuta
机构
[1] Shandong University of Science and Technology,College of Mathematics and Systems Science
[2] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[3] Kwansei Gakuin University,Research Center for Mathematical Science
来源
Science China Mathematics | 2020年 / 63卷
关键词
maximal singular integrals; maximal functions; Triebel-Lizorkin spaces; Besov spaces; 42B20; 42B15; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we systematically study several classes of maximal singular integrals and maximal functions with rough kernels in ℱβ(Sn−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr{F}_{\beta}\left(\mathrm{S}^{n-1}\right)$$\end{document}, a topic that relates to the Grafakos-Stefanov class. The boundedness and continuity of these operators on Triebel-Lizorkin spaces and Besov spaces are discussed.
引用
收藏
页码:907 / 936
页数:29
相关论文
共 50 条