Mineralogical composition, surface inspection and analysis by Mössbauer spectroscopy to identify a meteorite

被引:0
|
作者
Fabián-Salvador J. [1 ]
César Barrero M. [2 ]
Jairo Ruiz C. [3 ]
Bolivar W. [3 ]
Enzo S. [4 ]
Gonzalez J.C. [5 ]
机构
[1] Grupo CAPAC, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima
[2] Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquia, Medellín
[3] Grupo de Materiales y Preciosos MAPRE, Facultad de Ingeniería, Universidad de Antioquia, Medellín
[4] Universitá degli Studi di Sassari, Sardegna
[5] Laboratorio de Cerámicos y Nanomateriales, Instituto de Investigación de Física, Universidad Nacional Mayor de San Marcos, Lima
关键词
Iron; Kamacite; Meteorite; Mineralogical characterization; Mössbauer spectroscopy;
D O I
10.1007/s10751-024-01873-6
中图分类号
学科分类号
摘要
A piece of rock belonging to the geological-mineralogical collection of the University of Antioquia, with a metallic aspect and labelled as “meteorite originating from Devil’s Canyon (USA)” was subject to several spectroscopic analysis in order to confirm that it was a meteorite. X-ray fluorescence spectroscopy (XRF) shows that Fe and Ni are present in significant amount. The elemental composition showed the rock to contain 90.63% Fe and 7.35% Ni. The remaining 2% of elements were found to be: Si, Co, P, Al and W. The X-ray diffraction (XRD) shows that the major mineralogical phase corresponds to α-Fe. Mössbauer spectroscopy (MS) measurements at room temperature indicated three iron sites present: Fe3+, and the others two corresponding to sextets that could be assigned to either kamacite or taenite. The inner surface was analysed using AFM (Atomic Force Microscopy). The topography of selected areas shows roughness values range from 2.99 to 86.80 nm. Finally, the metallographic images of the microstructure of the material were compared with those obtained in 2001 and it was possible to verify and conclude that the rock effectively corresponds to a meteorite. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
引用
收藏
相关论文
共 50 条
  • [31] 57Fe Mössbauer Spectroscopy Studies of Meteorites: Implications for Weathering Rates, Meteorite Flux, and Early Solar System Processes
    P. A. Bland
    F. J. Berry
    A. J. T. Jull
    T. B. Smith
    A. W. R. Bevan
    J. M. Cadogan
    A. S. Sexton
    L. A. Franchi
    C. T. Pillinger
    Hyperfine Interactions, 2002, 141-142 : 481 - 494
  • [32] Evidence for direct observation by Mössbauer spectroscopy of surface tin atoms in platinum–tin particles
    J.-P. Candy
    E. Roisin
    J.-M. Basset
    D. Uzio
    S. Morin
    L. Fischer
    J. Olivier-Fourcade
    J.-C. Jumas
    Hyperfine Interactions, 2005, 165 : 55 - 60
  • [33] Surface spin disorder in nickel ferrite nanomagnets studied by in-field Mössbauer spectroscopy
    H. R. Rechenberg
    E. C. Sousa
    J. Depeyrot
    M. H. Sousa
    R. Aquino
    F. A. Tourinho
    R. Perzynski
    Hyperfine Interactions, 2008, 184 : 9 - 14
  • [34] Peculiarities of phase transitions in the iron-nanoclay surface system studied by Mössbauer spectroscopy
    A. A. Zalutskii
    Technical Physics Letters, 2014, 40 : 909 - 912
  • [35] Reclassification of CK chondrites confirmed by elemental analysis and Fe-Mössbauer spectroscopy
    Shiro Kubuki
    Jun Iwanuma
    Kazuhiko Akiyama
    Miki Isa
    Naoki Shirai
    Mitsuru Ebihara
    Tetsuaki Nishida
    Hyperfine Interactions, 2012, 208 : 75 - 78
  • [36] Surface analysis in archaeology using the miniaturized Mössbauer spectrometer MIMOS II
    Paulo A. De Souza
    B. Bernhardt
    G. Klingelhöfer
    P. Gütlich
    Hyperfine Interactions, 2003, 151-152 : 125 - 130
  • [37] Analysis of red pottery bodies from South Korea using Mössbauer spectroscopy
    Hyunkyung Choi
    Gwang-Min Sun
    Young Rang Uhm
    Journal of Radioanalytical and Nuclear Chemistry, 2023, 332 : 5119 - 5126
  • [38] Characterization of the Carancas–Puno meteorite by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Mössbauer spectroscopy
    María L. Cerón Loayza
    Jorge A. Bravo Cabrejos
    Hyperfine Interactions, 2011, 203 : 17 - 23
  • [39] The Fe2+ occupancies in the silicates M1 and M2 sites in Chelyabinsk LL5 meteorite determined using XRD and Mössbauer spectroscopy
    Maksimova A.A.
    Chukin A.V.
    Semionkin V.A.
    Oshtrakh M.I.
    Bulletin of the Russian Academy of Sciences: Physics, 2017, 81 (7) : 845 - 849
  • [40] Iron Oxides and Their Composition in Ceramic Brick Based on Power Plant Waste: Data from Mössbauer Spectroscopy
    Abdrakhimov, V. Z.
    COKE AND CHEMISTRY, 2023, 66 (12) : 630 - 637