Mineralogical composition, surface inspection and analysis by Mössbauer spectroscopy to identify a meteorite

被引:0
|
作者
Fabián-Salvador J. [1 ]
César Barrero M. [2 ]
Jairo Ruiz C. [3 ]
Bolivar W. [3 ]
Enzo S. [4 ]
Gonzalez J.C. [5 ]
机构
[1] Grupo CAPAC, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima
[2] Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquia, Medellín
[3] Grupo de Materiales y Preciosos MAPRE, Facultad de Ingeniería, Universidad de Antioquia, Medellín
[4] Universitá degli Studi di Sassari, Sardegna
[5] Laboratorio de Cerámicos y Nanomateriales, Instituto de Investigación de Física, Universidad Nacional Mayor de San Marcos, Lima
关键词
Iron; Kamacite; Meteorite; Mineralogical characterization; Mössbauer spectroscopy;
D O I
10.1007/s10751-024-01873-6
中图分类号
学科分类号
摘要
A piece of rock belonging to the geological-mineralogical collection of the University of Antioquia, with a metallic aspect and labelled as “meteorite originating from Devil’s Canyon (USA)” was subject to several spectroscopic analysis in order to confirm that it was a meteorite. X-ray fluorescence spectroscopy (XRF) shows that Fe and Ni are present in significant amount. The elemental composition showed the rock to contain 90.63% Fe and 7.35% Ni. The remaining 2% of elements were found to be: Si, Co, P, Al and W. The X-ray diffraction (XRD) shows that the major mineralogical phase corresponds to α-Fe. Mössbauer spectroscopy (MS) measurements at room temperature indicated three iron sites present: Fe3+, and the others two corresponding to sextets that could be assigned to either kamacite or taenite. The inner surface was analysed using AFM (Atomic Force Microscopy). The topography of selected areas shows roughness values range from 2.99 to 86.80 nm. Finally, the metallographic images of the microstructure of the material were compared with those obtained in 2001 and it was possible to verify and conclude that the rock effectively corresponds to a meteorite. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
引用
收藏
相关论文
共 50 条
  • [21] Combination of emission channeling, photoluminescence and Mössbauer spectroscopy to identify rare earth defect complexes in semiconductors
    Fakultät für Physik, Universität Konstanz, Konstanz
    D-78457, Germany
    不详
    不详
    CH-1211, Switzerland
    Hyperfine Interact., 1-8 (347-352):
  • [22] Combination of emission channeling, photoluminescence and Mössbauer spectroscopy to identify rare earth defect complexes in semiconductors
    M. Dalmer
    U. Vetter
    M. Restle
    A. Stötzler
    H. Hofsäss
    C. Ronning
    M.K. Moodley
    K. Bharuth-Ram
    Hyperfine Interactions, 1999, 120-121 (1-8): : 347 - 352
  • [23] The use of operationally -defined sequential Fe extraction methods for mineralogical applications: A cautionary tale from M?ssbauer spectroscopy
    Hepburn, Laura E.
    Butler, Ian B.
    Boyce, Adrian
    Schroder, Christian
    CHEMICAL GEOLOGY, 2020, 543
  • [24] Study of Chelyabinsk LL5 meteorite fragments with different lithology using Mössbauer spectroscopy with a high velocity resolution
    M. I. Oshtrakh
    A. A. Maksimova
    Z. Klencsár
    E. V. Petrova
    V. I. Grokhovsky
    E. Kuzmann
    Z. Homonnay
    V. A. Semionkin
    Journal of Radioanalytical and Nuclear Chemistry, 2016, 308 : 1103 - 1111
  • [25] Study of iron meteorite Sikhote–Alin and extracted iron–nickel phosphides using Mössbauer spectroscopy with high velocity resolution
    M. I. Oshtrakh
    M. Yu. Larionov
    V. I. Grokhovsky
    V. A. Semionkin
    Hyperfine Interactions, 2008, 186 : 53 - 59
  • [26] Re-examination of Dronino iron meteorite and its weathering products using Mössbauer spectroscopy with a high velocity resolution
    M. I. Oshtrakh
    G. A. Yakovlev
    V. I. Grokhovsky
    V. A. Semionkin
    Hyperfine Interactions, 2016, 237
  • [27] Analysis of the Magnetic Structure of the BiFeO3 Multiferroic by Mössbauer Spectroscopy
    V. S. Rusakov
    V. S. Pokatilov
    A. S. Sigov
    M. E. Matsnev
    A. P. Pyatakov
    Doklady Physics, 2018, 63 : 223 - 226
  • [28] Phase analysis of two steel work rolls using Mössbauer spectroscopy
    Sei Jin Oh
    Soon-Ju Kwon
    Hongsug Oh
    Sunghak Lee
    Keun Chul Hwang
    Metallurgical and Materials Transactions A, 2000, 31 : 793 - 798
  • [29] The use of operationally-defined sequential Fe extraction methods for mineralogical applications: A cautionary tale from Mössbauer spectroscopy
    Hepburn, Laura E.
    Butler, Ian B.
    Boyce, Adrian
    Schröder, Christian
    Chemical Geology, 2021, 543
  • [30] 57Fe hyperfine interactions in M1 and M2 sites of olivine from Omolon meteorite: study using Mössbauer spectroscopy
    D. G. Patrusheva
    M. I. Oshtrakh
    E. V. Petrova
    V. I. Grokhovsky
    V. A. Semionkin
    Hyperfine Interactions, 2010, 197 : 295 - 300