We address the question of whether three-dimensional crystals are minimizers of classical many-body energies. This problem is of conceptual relevance as it presents a significant milestone towards understanding, on the atomistic level, phenomena such as melting or plastic behavior. We characterize a set of rotation- and translation-invariant two- and three-body potentials V2, V3 such that the energy minimum of
1#YE(Y)=1#Y2∑{y,y′}⊂YV2(y,y′)+6∑{y,y′,y′′}⊂YV3(y,y′,y′′)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{1}{\#Y}E(Y) = \frac{1}{\# Y}
\left(2\sum_{\{y,y'\}
\subset Y}V_2(y, y') + 6\sum_{\{y,y',y''\}
\subset Y} V_3(y,y',y'')\right)$$\end{document}over all Y⊂R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${Y \subset \mathbb{R}^3}$$\end{document}, #Y = n, converges to the energy per particle in the face-centered cubic (fcc) lattice as n tends to infinity. The proof involves a careful analysis of the symmetry properties of the fcc lattice.