Face-Centered Cubic Crystallization of Atomistic Configurations

被引:0
|
作者
L. C. Flatley
F. Theil
机构
[1] University of Warwick,Mathematics Institute
关键词
Triangular Lattice; Reference Path; Contact Graph; Label Path; Admissible Path;
D O I
暂无
中图分类号
学科分类号
摘要
We address the question of whether three-dimensional crystals are minimizers of classical many-body energies. This problem is of conceptual relevance as it presents a significant milestone towards understanding, on the atomistic level, phenomena such as melting or plastic behavior. We characterize a set of rotation- and translation-invariant two- and three-body potentials V2, V3 such that the energy minimum of 1#YE(Y)=1#Y2∑{y,y′}⊂YV2(y,y′)+6∑{y,y′,y′′}⊂YV3(y,y′,y′′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{\#Y}E(Y) = \frac{1}{\# Y} \left(2\sum_{\{y,y'\} \subset Y}V_2(y, y') + 6\sum_{\{y,y',y''\} \subset Y} V_3(y,y',y'')\right)$$\end{document}over all Y⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y \subset \mathbb{R}^3}$$\end{document}, #Y = n, converges to the energy per particle in the face-centered cubic (fcc) lattice as n tends to infinity. The proof involves a careful analysis of the symmetry properties of the fcc lattice.
引用
收藏
页码:363 / 416
页数:53
相关论文
共 50 条
  • [1] Face-Centered Cubic Crystallization of Atomistic Configurations
    Flatley, L. C.
    Theil, F.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) : 363 - 416
  • [2] ENERGIES OF 2 INTERSTITIAL CONFIGURATIONS IN A FACE-CENTERED CUBIC CRYSTAL
    HOEKSTRA, P
    BEHRENDT, DR
    PHYSICAL REVIEW, 1962, 128 (02): : 560 - &
  • [3] A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals
    Zhang, Liang
    Lu, Cheng
    Tieu, Kiet
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 118 : 180 - 191
  • [4] THERMODYNAMICS OF FACE-CENTERED TETRAGONAL FACE-CENTERED CUBIC TRANSITIONS IN INDIUM ALLOYS
    POLOVOV, VM
    PONYATOV.EG
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1973, 64 (03): : 937 - 945
  • [5] On the properties of face-centered cubic fullerites
    Magomedov, MN
    PHYSICS OF THE SOLID STATE, 2005, 47 (04) : 785 - 794
  • [6] STATISTICS OF A FACE-CENTERED CUBIC FERROMAGNET
    DEMPSEY, E
    TERHAAR, D
    PHYSICAL REVIEW, 1954, 95 (02): : 651 - 652
  • [7] VISCOPLASTICITY OF FACE-CENTERED CUBIC METALS
    LEROY, M
    OFFRET, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1972, 273 (01): : 29 - &
  • [8] On the properties of face-centered cubic fullerites
    M. N. Magomedov
    Physics of the Solid State, 2005, 47 : 785 - 794
  • [9] Atomistic simulation of rolling contact fatigue behavior of a face-centered cubic material (nickel)
    Goswami, Pragyan
    Pal, Snehanshu
    Gupta, Manoj
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2024, 47 (02) : 439 - 452
  • [10] Comparison on Hysteresis Loops and Dislocation Configurations in Fatigued Face-Centered Cubic Single Crystals
    Xing, Zhibin
    Kong, Lingwei
    Pang, Lei
    Liu, Xu
    Ma, Kunyang
    Wu, Wenbo
    Li, Peng
    METALS, 2024, 14 (09)