Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source

被引:0
|
作者
Xiaoshan Wang
Zhongqian Wang
Zhe Jia
机构
[1] Luoyang Normal University,Department of Mathematics
[2] Jiangsu Second Normal University,School of Mathematics Science
[3] Linyi University,School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2024年 / 44卷
关键词
global weak solutions; attraction-repulsion; -Laplacian; logistic source; 35Q92; 35K65; 35Q35; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source {ut=∇⋅(|∇u|p−2∇u)−χ∇⋅(u∇v)+ξ∇⋅(u∇w)+f(u),x∈Ω,t>0,vt=Δv−βv+αuk1,x∈Ω,t>0,0=Δw−δw+γuk2,x∈Ω,t>0,u(x,0)=u0(x),v(x,0)=v0(x),w(x,0)=w0(x),x∈Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{{{u_t} = \nabla \cdot (|\nabla u{|^{p - 2}}\nabla u) - \chi \nabla \cdot (u\nabla v) + \xi \nabla \cdot (u\nabla w) + f(u),} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {{v_t} = \Delta v - \beta v + \alpha {u^{{k_1}}},} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {0 = \Delta w - \delta w + \gamma {u^{{k_2}}},} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {u(x,0) = {u_0}(x),\,\,\,v(x,0) = {v_0}(x),\,\,\,w(x,0) = {w_0}(x),} \hfill & {x \in \Omega .} \hfill \cr } } \right.$$\end{document}
引用
收藏
页码:909 / 924
页数:15
相关论文
共 50 条
  • [31] GLOBAL EXISTENCE OF SOLUTIONS TO AN ATTRACTION-REPULSION CHEMOTAXIS MODEL WITH GROWTH
    Wu, Sainan
    Shi, Junping
    Wu, Boying
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (03) : 1037 - 1058
  • [32] Global Classical Solutions, Stability of Constant Equilibria, and Spreading Speeds in Attraction-Repulsion Chemotaxis Systems with Logistic Source on RN
    Salako, Rachidi B.
    Shen, Wenxian
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1301 - 1325
  • [33] Global solvability and boundedness to a attraction-repulsion model with logistic source
    Zhang, Danqing
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [34] An Attraction-Repulsion Chemotaxis System: The Roles of Nonlinear Diffusion and Productions
    Zhan Jiao
    Irena Jadlovská
    Tongxing Li
    Acta Applicandae Mathematicae, 2024, 190
  • [35] Large time behavior of solution to an attraction-repulsion chemotaxis system with logistic source in three dimensions
    Li, Dan
    Mu, Chunlai
    Lin, Ke
    Wang, Liangchen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 914 - 936
  • [36] An Attraction-Repulsion Chemotaxis System: The Roles of Nonlinear Diffusion and Productions
    Jiao, Zhan
    Jadlovska, Irena
    Li, Tongxing
    ACTA APPLICANDAE MATHEMATICAE, 2024, 190 (01)
  • [37] Boundedness criteria for the quasilinear attraction-repulsion chemotaxis system with nonlinear signal production and logistic source
    Wang, Chang-Jian
    Yang, Yu-Tao
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (01): : 299 - 318
  • [38] BOUNDEDNESS AND LARGE TIME BEHAVIOR OF AN ATTRACTION-REPULSION CHEMOTAXIS MODEL WITH LOGISTIC SOURCE
    Shi, Shijie
    Liu, Zhengrong
    Jin, Hai-Yang
    KINETIC AND RELATED MODELS, 2017, 10 (03) : 855 - 878
  • [39] Global existence and boundedness in a fully parabolic attraction-repulsion chemotaxis system with signal-dependent sensitivities and logistic source
    Chiyo, Yutaro
    Mizukami, Masaaki
    Yokota, Tomomi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 489 (01)
  • [40] Global boundedness of weak solutions to a chemotaxis-haptotaxis model with p-Laplacian diffusion
    Wang, Jinhuan
    Chen, Haomeng
    Zhuang, Mengdi
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):