Global Classical Solutions, Stability of Constant Equilibria, and Spreading Speeds in Attraction-Repulsion Chemotaxis Systems with Logistic Source on RN

被引:0
|
作者
Salako, Rachidi B. [1 ]
Shen, Wenxian [1 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
关键词
Parabolic-elliptic chemotaxis system; Logistic source; Classical solution; Local existence; Global existence; Asymptotic stability; Spreading speeds; TIME BLOW-UP; TRAVELING-WAVES; VARIATIONAL PRINCIPLE; PATTERN-FORMATION; EXISTENCE; BOUNDEDNESS; GROWTH; MODEL; PROPAGATION; FRONTS;
D O I
10.1007/s10884-017-9602-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following chemotaxis systems of parabolic- ellipticelliptic type on RN, ut = u -.1.( u. v1) +.2.( u. v2) + u( a - bu), x. RN, t > 0, 0 = ( -.1 I) v1 + mu 1u, x. RN, t > 0, 0 = ( -.2 I) v2 + mu 2u, x. RN, t > 0, u( center dot, 0) = u0, x. RN where.i = 0,.i > 0, mu i > 0 ( i = 1, 2) and a > 0, b > 0 are constant real numbers, and N is a positive integer. First, under some conditions on the parameters.i, mu i,.i, a, b and N, we prove the global existence and boundedness of classical solutions ( u( x, t; u0), v1( x, t; u0), v2( x, t; u0)) for nonnegative, bounded, and uniformly continuous initial functions u0( x). Next, we explore the asymptotic stability of the constant equilibrium ( a b, mu 1.1 a b, mu 2.2 a b) and prove under some further assumption on the parameters that, for every strictly positive initial u0( x), lim t.8 u( center dot, t; u0) - a b 8 + .1v1( center dot, t; u0) - a b mu 1 8 + .2v2( center dot, t; u0) - a b mu 2 8 = 0. Finally, we investigate the spreading properties of the global solutions with compactly supported initial functions. We show that under some conditions on the parameters, there are two positive numbers 0 < c *- (.1, mu 1,.1,.2, mu 2,.2) = c *+ (.1, mu 1,.1,.2, mu 2,.2) such that for every nonnegative initial function u0( x) with nonempty and compact support, we have lim t.8 sup | x|= ct | u( x, t; u0) - a b |+ sup | x|= ct |.1v1( x, t; u0) - a b mu 1|+ sup | x|= ct |.2v2( x, t; u0) - a b mu 2| = 0 whenever 0 = c < c *- (.1, mu 1,.1,.2, mu 2,.2), and lim t.8 sup | x|= ct | u( x, t; u0)| + sup | x|= ct | v1( x, t; u0)| + sup | x|= ct | v2( x, t; u0)| = 0 whenever c > c *+ (.1, mu 1,.1,.2, mu 2,.2). Furthermore we show that lim (.1,.2).( 0,0) c *- (.1, mu 1,.1,.2, mu 2,.2) = lim (.1,.2).( 0,0) c *+ (.1, mu 1,.1,.2, mu 2,.2) = 2 root a.
引用
收藏
页码:1301 / 1325
页数:25
相关论文
共 50 条
  • [1] Global dynamics for an attraction-repulsion chemotaxis model with logistic source
    Ren, Guoqiang
    Liu, Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) : 4320 - 4373
  • [2] Spreading speed in a fractional attraction-repulsion chemotaxis system with logistic source
    Jiang, Chao
    Lei, Yuzhu
    Liu, Zuhan
    Zhang, Weiyi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 230
  • [3] On an attraction-repulsion chemotaxis system with a logistic source
    Li, Xie
    Xiang, Zhaoyin
    IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (01) : 165 - 198
  • [4] An attraction-repulsion chemotaxis system with logistic source
    Zhang, Qingshan
    Li, Yuxiang
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (05): : 570 - 584
  • [5] Global boundedness in quasilinear attraction-repulsion chemotaxis system with logistic source
    Tian, Miaoqing
    He, Xiao
    Zheng, Sining
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 : 1 - 15
  • [6] GLOBAL EXISTENCE FOR AN ATTRACTION-REPULSION CHEMOTAXIS FLUID MODEL WITH LOGISTIC SOURCE
    Duarte-Rodriguez, Abelardo
    Ferreira, Lucas C. F.
    Villamizar-Roa, Elder J.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (02): : 423 - 447
  • [7] A quasilinear attraction-repulsion chemotaxis system with logistic source
    Cai, Yuanyuan
    Li, Zhongping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 70
  • [8] A new result on existence of global bounded classical solution to a attraction-repulsion chemotaxis system with logistic source
    Xie, Jianing
    Zheng, Jiashan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 298 : 159 - 181
  • [9] Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source
    Wang, Xiaoshan
    Wang, Zhongqian
    Jia, Zhe
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) : 909 - 924
  • [10] GLOBAL WEAK SOLUTIONS FOR AN ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH p-LAPLACIAN DIFFUSION AND LOGISTIC SOURCE
    王晓闪
    王忠谦
    贾哲
    Acta Mathematica Scientia, 2024, 44 (03) : 909 - 924