Shrinked (1 − α) ensemble Kalman filter and α Gaussian mixture filter

被引:0
|
作者
Javad Rezaie
Jo Eidsvik
机构
[1] Norwegian University of Science and Technology,Department of Mathematical Sciences
来源
Computational Geosciences | 2012年 / 16卷
关键词
Sequential updating; Filtering; EnKF; Reservoir simulation; Statistics;
D O I
暂无
中图分类号
学科分类号
摘要
State estimation in high dimensional systems remains a challenging part of real time analysis. The ensemble Kalman filter addresses this challenge by using Gaussian approximations constructed from a number of samples. This method has been a large success in many applications. Unfortunately, for some cases, Gaussian approximations are no longer valid, and the filter does not work so well. In this paper, we use the idea of the ensemble Kalman filter together with the more theoretically valid particle filter. We outline a Gaussian mixture approach based on shrinking the predicted samples to overcome sample degeneracy, while maintaining non-Gaussian nature. A tuning parameter determines the degree of shrinkage. The computational cost is similar to the ensemble Kalman filter. We compare several filtering methods on three different cases: a target tracking model, the Lorenz 40 model, and a reservoir simulation example conditional on seismic and electromagnetic data.
引用
收藏
页码:837 / 852
页数:15
相关论文
共 50 条
  • [1] Shrinked (1-α) ensemble Kalman filter and α Gaussian mixture filter
    Rezaie, Javad
    Eidsvik, Jo
    [J]. COMPUTATIONAL GEOSCIENCES, 2012, 16 (03) : 837 - 852
  • [2] Gaussian-Mixture based Ensemble Kalman Filter
    Govaers, Felix
    Koch, Wolfgang
    Willett, Peter
    [J]. 2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1625 - 1632
  • [3] Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter
    Stordal, Andreas S.
    Karlsen, Hans A.
    Naevdal, Geir
    Skaug, Hans J.
    Valles, Brice
    [J]. COMPUTATIONAL GEOSCIENCES, 2011, 15 (02) : 293 - 305
  • [4] Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter
    Andreas S. Stordal
    Hans A. Karlsen
    Geir Nævdal
    Hans J. Skaug
    Brice Vallès
    [J]. Computational Geosciences, 2011, 15 : 293 - 305
  • [5] Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models
    Stordal, Andreas S.
    Valestrand, Randi
    Karlsen, Hans Arnfinn
    Naevdal, Geir
    Skaug, Hans Julius
    [J]. COMPUTATIONAL GEOSCIENCES, 2012, 16 (02) : 467 - 482
  • [6] Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models
    Andreas S. Stordal
    Randi Valestrand
    Hans Arnfinn Karlsen
    Geir Nævdal
    Hans Julius Skaug
    [J]. Computational Geosciences, 2012, 16 : 467 - 482
  • [7] THE GAUSSIAN MIXTURE CONSIDER KALMAN FILTER
    McCabe, James S.
    DeMars, Kyle J.
    [J]. SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 1077 - 1096
  • [8] Gaussian Mixture Model-Based Ensemble Kalman Filter for Machine Parameter Calibration
    Fan, Rui
    Huang, Renke
    Diao, Ruisheng
    [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2018, 33 (03) : 1597 - 1599
  • [9] A Gaussian-mixture ensemble transform filter
    Reich, Sebastian
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (662) : 222 - 233
  • [10] Ensemble Kalman filter
    School of Electrical Engineering and Computer Science, University of Oklahoma, Norman, OK, United States
    不详
    [J]. IEEE Control Syst Mag, 2009, 3 (34-46):