THE GAUSSIAN MIXTURE CONSIDER KALMAN FILTER

被引:0
|
作者
McCabe, James S. [1 ]
DeMars, Kyle J. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, 1201 N State St, Rolla, MO 65409 USA
来源
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The consider Kalman filter, or Schmidt-Kalman filter, is a tool developed by S.F. Schmidt at NASA Ames in the 1960s to account for uncertain parameters or biases within the system and observational models of a tracking algorithm. Its novelty is in that it "considers" the effects of the uncertain parameters rather than other Kalman-filter-based approaches, which instead estimate these parameters directly. Avoiding this online estimation of parameters allows, in many cases, for a more computationally feasible algorithm to be acquired, making it amenable to real-time applications. The consider Kalman filter, however, is an approach that works solely with the mean and covariance of the posterior distribution. In many problems, mean and covariance are often insufficient statistical descriptions of the filtering state. This work presents a consider formulation that works with a Gaussian sum approximation of the true distribution, permitting the Gaussian mixture consider Kalman filter and enabling an operator to maintain a more complete description of the true posterior state density while still working within a consider framework.
引用
收藏
页码:1077 / 1096
页数:20
相关论文
共 50 条
  • [1] Shrinked (1 − α) ensemble Kalman filter and α Gaussian mixture filter
    Javad Rezaie
    Jo Eidsvik
    [J]. Computational Geosciences, 2012, 16 : 837 - 852
  • [2] Gaussian-Mixture based Ensemble Kalman Filter
    Govaers, Felix
    Koch, Wolfgang
    Willett, Peter
    [J]. 2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1625 - 1632
  • [3] Shrinked (1-α) ensemble Kalman filter and α Gaussian mixture filter
    Rezaie, Javad
    Eidsvik, Jo
    [J]. COMPUTATIONAL GEOSCIENCES, 2012, 16 (03) : 837 - 852
  • [4] Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter
    Andreas S. Stordal
    Hans A. Karlsen
    Geir Nævdal
    Hans J. Skaug
    Brice Vallès
    [J]. Computational Geosciences, 2011, 15 : 293 - 305
  • [5] Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter
    Stordal, Andreas S.
    Karlsen, Hans A.
    Naevdal, Geir
    Skaug, Hans J.
    Valles, Brice
    [J]. COMPUTATIONAL GEOSCIENCES, 2011, 15 (02) : 293 - 305
  • [6] Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models
    Stordal, Andreas S.
    Valestrand, Randi
    Karlsen, Hans Arnfinn
    Naevdal, Geir
    Skaug, Hans Julius
    [J]. COMPUTATIONAL GEOSCIENCES, 2012, 16 (02) : 467 - 482
  • [7] Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models
    Andreas S. Stordal
    Randi Valestrand
    Hans Arnfinn Karlsen
    Geir Nævdal
    Hans Julius Skaug
    [J]. Computational Geosciences, 2012, 16 : 467 - 482
  • [8] Illegal Parking Detection Using Gaussian Mixture Model and Kalman Filter
    Alkhawaji, Rami
    Sedky, Mohamed
    Soliman, Abdel-Hamid
    [J]. 2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2017, : 840 - 847
  • [9] Vehicle Detection and Tracking using Gaussian Mixture Model and Kalman Filter
    Indrabayu
    Bakti, Rizki Yusliana
    Areni, Intan Sari
    Prayogi, A. Ais
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND CYBERNETICS, 2016, : 115 - 119
  • [10] Vehicle Speed Estimation Using Gaussian Mixture Model and Kalman Filter
    Tayeb, A. A.
    Aldhaheri, R. W.
    Hanif, M. S.
    [J]. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2021, 16 (04) : 1 - 11