Shrinked (1-α) ensemble Kalman filter and α Gaussian mixture filter

被引:10
|
作者
Rezaie, Javad [1 ]
Eidsvik, Jo [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Sequential updating; Filtering; EnKF; Reservoir simulation; Statistics; DATA ASSIMILATION;
D O I
10.1007/s10596-012-9291-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
State estimation in high dimensional systems remains a challenging part of real time analysis. The ensemble Kalman filter addresses this challenge by using Gaussian approximations constructed from a number of samples. This method has been a large success in many applications. Unfortunately, for some cases, Gaussian approximations are no longer valid, and the filter does not work so well. In this paper, we use the idea of the ensemble Kalman filter together with the more theoretically valid particle filter. We outline a Gaussian mixture approach based on shrinking the predicted samples to overcome sample degeneracy, while maintaining non-Gaussian nature. A tuning parameter determines the degree of shrinkage. The computational cost is similar to the ensemble Kalman filter. We compare several filtering methods on three different cases: a target tracking model, the Lorenz 40 model, and a reservoir simulation example conditional on seismic and electromagnetic data.
引用
收藏
页码:837 / 852
页数:16
相关论文
共 50 条
  • [1] Shrinked (1 − α) ensemble Kalman filter and α Gaussian mixture filter
    Javad Rezaie
    Jo Eidsvik
    Computational Geosciences, 2012, 16 : 837 - 852
  • [2] Gaussian-Mixture based Ensemble Kalman Filter
    Govaers, Felix
    Koch, Wolfgang
    Willett, Peter
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1625 - 1632
  • [3] Bayesian Ensemble Kalman Filter for Gaussian Mixture Models
    Håkon Gryvill
    Dario Grana
    Håkon Tjelmeland
    Mathematical Geosciences, 2025, 57 (1) : 153 - 192
  • [4] Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter
    Andreas S. Stordal
    Hans A. Karlsen
    Geir Nævdal
    Hans J. Skaug
    Brice Vallès
    Computational Geosciences, 2011, 15 : 293 - 305
  • [5] Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter
    Stordal, Andreas S.
    Karlsen, Hans A.
    Naevdal, Geir
    Skaug, Hans J.
    Valles, Brice
    COMPUTATIONAL GEOSCIENCES, 2011, 15 (02) : 293 - 305
  • [6] Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models
    Stordal, Andreas S.
    Valestrand, Randi
    Karlsen, Hans Arnfinn
    Naevdal, Geir
    Skaug, Hans Julius
    COMPUTATIONAL GEOSCIENCES, 2012, 16 (02) : 467 - 482
  • [7] Comparing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic reservoir models
    Andreas S. Stordal
    Randi Valestrand
    Hans Arnfinn Karlsen
    Geir Nævdal
    Hans Julius Skaug
    Computational Geosciences, 2012, 16 : 467 - 482
  • [8] THE GAUSSIAN MIXTURE CONSIDER KALMAN FILTER
    McCabe, James S.
    DeMars, Kyle J.
    SPACEFLIGHT MECHANICS 2016, PTS I-IV, 2016, 158 : 1077 - 1096
  • [9] Gaussian Mixture Model-Based Ensemble Kalman Filter for Machine Parameter Calibration
    Fan, Rui
    Huang, Renke
    Diao, Ruisheng
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2018, 33 (03) : 1597 - 1599
  • [10] A Gaussian-mixture ensemble transform filter
    Reich, Sebastian
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (662) : 222 - 233