A Penalized Crouzeix–Raviart Element Method for Second Order Elliptic Eigenvalue Problems

被引:0
|
作者
Jun Hu
Limin Ma
机构
[1] Peking University,LMAM and School of Mathematical Sciences
来源
关键词
Eigenvalue problem; Penalized Crouzeix–Raviart element method; Crouzeix–Raviart element method; 65N30; 73C02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we propose a penalized Crouzeix–Raviart element method for eigenvalue problems of second order elliptic operators. The key idea is to add a penalty term to tune the local approximation property and the global continuity property of discrete eigenfunctions. The feature of this method is that by adjusting the penalty parameter, some of the resulted discrete eigenvalues are upper bounds of exact ones, and the others are lower bounds, and consequently a large portion of them can be reliable and approximate eigenvalues with high accuracy. Furthermore, we design an algorithm to select a penalty parameter which meets the condition. Finally we provide numerical tests to demonstrate the performance of the proposed method.
引用
收藏
页码:1457 / 1479
页数:22
相关论文
共 50 条
  • [31] A partially penalty immersed Crouzeix-Raviart finite element method for interface problems
    Na An
    Xijun Yu
    Huanzhen Chen
    Chaobao Huang
    Zhongyan Liu
    [J]. Journal of Inequalities and Applications, 2017
  • [32] Additive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients
    Talal Rahman
    Xuejun Xu
    Ronald Hoppe
    [J]. Numerische Mathematik, 2005, 101 : 551 - 572
  • [33] A partially penalty immersed Crouzeix-Raviart finite element method for interface problems
    An, Na
    Yu, Xijun
    Chen, Huanzhen
    Huang, Chaobao
    Liu, Zhongyan
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [34] A FINITE ELEMENT METHOD FOR SECOND ORDER NONVARIATIONAL ELLIPTIC PROBLEMS
    Lakkis, Omar
    Pryer, Tristan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (02): : 786 - 801
  • [35] Superconvergent Cluster Recovery Method for the Crouzeix-Raviart Element
    Zhang, Yidan
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02) : 508 - 526
  • [36] A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions
    Chatzipantelidis, P
    [J]. NUMERISCHE MATHEMATIK, 1999, 82 (03) : 409 - 432
  • [37] EDGE-BASED SCHWARZ METHODS FOR THE CROUZEIX-RAVIART FINITE VOLUME ELEMENT DISCRETIZATION OF ELLIPTIC PROBLEMS
    Loneland, Atle
    Marcinkowski, Leszek
    Rahman, Talal
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 443 - 461
  • [38] AN OVER-PENALIZED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS
    Liu, Kaifang
    Song, Lunji
    Zhou, Shuangfeng
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (06) : 866 - 880
  • [39] A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem
    Bi, Hai
    Yang, Yidu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) : 9669 - 9678
  • [40] Schwarz Methods for a Crouzeix-Raviart Finite Volume Discretization of Elliptic Problems
    Marcinkowski, Leszek
    Loneland, Atle
    Rahman, Talal
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 595 - 602