A FINITE ELEMENT METHOD FOR SECOND ORDER NONVARIATIONAL ELLIPTIC PROBLEMS

被引:39
|
作者
Lakkis, Omar [1 ]
Pryer, Tristan [2 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9QH, E Sussex, England
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 02期
关键词
finite element method; nonvariational form second order elliptic PDE; Hessian recovery; Schur complement; MONGE-AMPERE EQUATION;
D O I
10.1137/100787672
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of Galerkin type using conforming finite elements and applied directly to the nonvariational (nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of "finite element Hessian" and a Schur complement approach to solving the resulting linear algebra problem. The method is illustrated with computational experiments on three linear and one quasi-linear PDE, all in nonvariational form.
引用
收藏
页码:786 / 801
页数:16
相关论文
共 50 条