On the Inverse of a Fibonacci Number Modulo a Fibonacci Number Being a Fibonacci Number

被引:0
|
作者
Carlo Sanna
机构
[1] Politecnico di Torino,Department of Mathematical Sciences
来源
关键词
Congruences; Fibonacci numbers; Lucas numbers; modular arithmetic; modular multiplicative inverse; Primary 11B39; Secondary 11A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Fn)n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_n)_{n \ge 1}$$\end{document} be the sequence of Fibonacci numbers. For all integers a and b≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ge 1$$\end{document} with gcd(a,b)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (a, b) = 1$$\end{document}, let [a-1modb]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a^{-1} \!\bmod b]$$\end{document} be the multiplicative inverse of a modulo b, which we pick in the usual set of representatives {0,1,⋯,b-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0, 1, \dots , b-1\}$$\end{document}. Put also [a-1modb]:=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a^{-1} \!\bmod b]:= \infty $$\end{document} when gcd(a,b)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (a, b) > 1$$\end{document}. We determine all positive integers m and n such that [Fm-1modFn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[F_m^{-1} \bmod F_n]$$\end{document} is a Fibonacci number. This extends a previous result of Prempreesuk, Noppakaew, and Pongsriiam, who considered the special case m∈{3,n-3,n-2,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \in \{3, n - 3, n - 2, n - 1\}$$\end{document} and n≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 7$$\end{document}. Let (Ln)n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L_n)_{n \ge 1}$$\end{document} be the sequence of Lucas numbers. We also determine all positive integers m and n such that [Lm-1modLn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[L_m^{-1} \bmod L_n]$$\end{document} is a Lucas number.
引用
收藏
相关论文
共 50 条
  • [1] On the Inverse of a Fibonacci Number Modulo a Fibonacci Number Being a Fibonacci Number
    Sanna, Carlo
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [2] FIBONACCI NUMBER TRIPLES
    HORADAM, AF
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (08): : 751 - &
  • [3] On Some Magnified Fibonacci Numbers Modulo a Lucas Number
    Pandey, Ram Krishna
    [J]. JOURNAL OF INTEGER SEQUENCES, 2013, 16 (01)
  • [4] Zeckendorf representation of multiplicative inverses modulo a Fibonacci number
    Gessica Alecci
    Nadir Murru
    Carlo Sanna
    [J]. Monatshefte für Mathematik, 2023, 201 : 1 - 9
  • [5] Zeckendorf representation of multiplicative inverses modulo a Fibonacci number
    Alecci, Gessica
    Murru, Nadir
    Sanna, Carlo
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 201 (01): : 1 - 9
  • [6] On the sum of a Fibonacci number and a prime
    Wang, Rui-Jing
    Chen, Yong-Gao
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (04) : 873 - 889
  • [7] From Floor to Fibonacci Number
    Ohtsuka, Hideyuki
    [J]. FIBONACCI QUARTERLY, 2020, 58 (04): : 374 - 374
  • [8] ON THE NUMBER OF FIBONACCI PARTITIONS OF A SET
    PRODINGER, H
    [J]. FIBONACCI QUARTERLY, 1981, 19 (05): : 463 - 465
  • [9] The sum of a prime and a Fibonacci number
    Liu, Zhixin
    Xue, Mengyuan
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (08) : 1815 - 1823
  • [10] The interval associated with a fibonacci number
    Komatsu, T
    [J]. FIBONACCI QUARTERLY, 2003, 41 (01): : 3 - 6