On the Inverse of a Fibonacci Number Modulo a Fibonacci Number Being a Fibonacci Number

被引:0
|
作者
Carlo Sanna
机构
[1] Politecnico di Torino,Department of Mathematical Sciences
来源
关键词
Congruences; Fibonacci numbers; Lucas numbers; modular arithmetic; modular multiplicative inverse; Primary 11B39; Secondary 11A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let (Fn)n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_n)_{n \ge 1}$$\end{document} be the sequence of Fibonacci numbers. For all integers a and b≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b \ge 1$$\end{document} with gcd(a,b)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (a, b) = 1$$\end{document}, let [a-1modb]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a^{-1} \!\bmod b]$$\end{document} be the multiplicative inverse of a modulo b, which we pick in the usual set of representatives {0,1,⋯,b-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{0, 1, \dots , b-1\}$$\end{document}. Put also [a-1modb]:=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a^{-1} \!\bmod b]:= \infty $$\end{document} when gcd(a,b)>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (a, b) > 1$$\end{document}. We determine all positive integers m and n such that [Fm-1modFn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[F_m^{-1} \bmod F_n]$$\end{document} is a Fibonacci number. This extends a previous result of Prempreesuk, Noppakaew, and Pongsriiam, who considered the special case m∈{3,n-3,n-2,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \in \{3, n - 3, n - 2, n - 1\}$$\end{document} and n≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 7$$\end{document}. Let (Ln)n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(L_n)_{n \ge 1}$$\end{document} be the sequence of Lucas numbers. We also determine all positive integers m and n such that [Lm-1modLn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[L_m^{-1} \bmod L_n]$$\end{document} is a Lucas number.
引用
收藏
相关论文
共 50 条
  • [41] Random Fibonacci sequences and the number 1.13198824...
    Viswanath, D
    [J]. MATHEMATICS OF COMPUTATION, 2000, 69 (231) : 1131 - 1155
  • [42] On quaternions with generalized Fibonacci and Lucas number components
    Polatli, Emrah
    Kesim, Seyhun
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [43] Fractional Fibonacci groups with an odd number of generators
    Chinyere, Ihechukwu
    Williams, Gerald
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2022, 312
  • [44] The number of k-digit Fibonacci numbers
    Puchta, JC
    [J]. FIBONACCI QUARTERLY, 2001, 39 (04): : 334 - 338
  • [45] The first fibonacci number divisible by a prime p
    Stong, R
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2004, 111 (06): : 539 - 540
  • [46] On generalized Fibonacci groups with an odd number of generators
    Szczepanski, A
    Vesnin, A
    [J]. COMMUNICATIONS IN ALGEBRA, 2000, 28 (02) : 959 - 965
  • [47] Number Theory and Mathematical Analysis - Fibonacci expansions
    Baiocchi, Claudio
    Komornik, Vilmos
    Loreti, Paola
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2021, 32 (03) : 379 - 389
  • [48] Asymptotic number of isometric generalized Fibonacci cubes
    Klavzar, Sandi
    Shpectorov, Sergey
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (02) : 220 - 226
  • [49] FIBONACCI NUMBER IDENTITIES FROM ALGEBRAIC UNITS
    KLIORYS, C
    [J]. FIBONACCI QUARTERLY, 1981, 19 (02): : 149 - 153
  • [50] On the domination number and the 2-packing number of Fibonacci cubes and Lucas cubes
    Castro, Aline
    Klavzar, Sandi
    Mollard, Michel
    Rho, Yoomi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2655 - 2660