Zeckendorf representation of multiplicative inverses modulo a Fibonacci number

被引:0
|
作者
Gessica Alecci
Nadir Murru
Carlo Sanna
机构
[1] Politecnico di Torino,Department of Mathematical Sciences
[2] Università degli Studi di Trento,Department of Mathematics
来源
关键词
Base-; expansion; Fibonacci number; Multiplicative inverse; Zeckendorf representation; Primary 11B39; Secondary 11A67; 11A99;
D O I
暂无
中图分类号
学科分类号
摘要
Prempreesuk, Noppakaew, and Pongsriiam determined the Zeckendorf representation of the multiplicative inverse of 2 modulo Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n$$\end{document}, for every positive integer n not divisible by 3, where Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n$$\end{document} denotes the nth Fibonacci number. We determine the Zeckendorf representation of the multiplicative inverse of a modulo Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n$$\end{document}, for every fixed integer a≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \ge 3$$\end{document} and for all positive integers n with gcd(a,Fn)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gcd (a, F_n) = 1$$\end{document}. Our proof makes use of the so-called base-φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} expansion of real numbers.
引用
收藏
页码:1 / 9
页数:8
相关论文
共 50 条
  • [1] Zeckendorf representation of multiplicative inverses modulo a Fibonacci number
    Alecci, Gessica
    Murru, Nadir
    Sanna, Carlo
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (01): : 1 - 9
  • [2] On the Inverse of a Fibonacci Number Modulo a Fibonacci Number Being a Fibonacci Number
    Carlo Sanna
    Mediterranean Journal of Mathematics, 2023, 20
  • [3] On the Inverse of a Fibonacci Number Modulo a Fibonacci Number Being a Fibonacci Number
    Sanna, Carlo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [4] A NOTE ON FIBONACCI TREES AND THE ZECKENDORF REPRESENTATION OF INTEGERS
    CAPOCELLI, RM
    FIBONACCI QUARTERLY, 1988, 26 (04): : 318 - 324
  • [5] THE ZECKENDORF REPRESENTATION OF A BEATTY-RELATED FIBONACCI SUM
    Griffiths, Martin
    FIBONACCI QUARTERLY, 2015, 53 (03): : 230 - 236
  • [6] On calculating multiplicative inverses modulo 2m
    Arazi, Ortal
    Qi, Hairong
    IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (10) : 1435 - 1438
  • [7] Zeckendorf Representation and Multiplicative Inverse of Fm mod Fn
    Prempreesuk, Bencharat
    Noppakaew, Passawan
    Pongsriiam, Prapanpong
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (01): : 17 - 25
  • [8] On Newton-Raphson Iteration for Multiplicative Inverses Modulo Prime Powers
    Dumas, Jean-Guillaume
    IEEE TRANSACTIONS ON COMPUTERS, 2014, 63 (08) : 2106 - 2109
  • [9] Table lookup structures for multiplicative inverses modulo 2k
    Matula, DW
    Fit-Florea, A
    Thornton, MA
    17th IEEE Symposium on Computer Arithmetic, Proceedings, 2005, : 156 - 163
  • [10] On Pascal's triangle modulo 2 in Fibonacci representation
    Karttunen, A
    FIBONACCI QUARTERLY, 2004, 42 (01): : 38 - 46