Forces for the Navier–Stokes Equations and the Koch and Tataru Theorem

被引:0
|
作者
Pierre Gilles Lemarié-Rieusset
机构
[1] Université Paris-Saclay,LaMME, Univ Evry, CNRS
关键词
Navier–Stokes equations; Critical spaces; Parabolic Sobolev spaces; Parabolic Morrey spaces; Mild solutions; 35K55; 35Q30; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the incompressible Navier–Stokes equations on the whole space R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}, with initial value u→0∈BMO-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec u_0\in \textrm{BMO}^{-1}$$\end{document} (as in Koch and Tataru’s theorem) and with force f→=divF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec f={{\,\textrm{div}\,}}\mathbb {F}$$\end{document} where smallness of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}$$\end{document} ensures existence of a mild solution in absence of initial value. We study the interaction of the two solutions and discuss the existence of global solution for the complete problem (i.e. in presence of initial value and forcing term) under smallness assumptions. In particular, we discuss the interaction between Koch and Tataru solutions and Lei-Lin’s solutions (in L2F-1L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2\mathcal {F}^{-1}L^1$$\end{document}) or solutions in the multiplier space M(H˙t,x1/2,1↦Lt,x2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(\dot{H}^{1/2,1}_{t,x}\mapsto L^2_{t,x})$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] A basic remark on some Navier-Stokes equations with body forces
    Gerbeau, JF
    Le Bris, C
    APPLIED MATHEMATICS LETTERS, 2000, 13 (03) : 107 - 112
  • [32] An elementary proof of the existence and uniqueness theorem for the Navier-Stokes equations
    Mattingly, JC
    Sinai, YG
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 1999, 1 (04) : 497 - 516
  • [33] The Navier-Stokes equations with body forces decaying coherently in time
    Hoang, Luan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (02)
  • [34] Asymptotic behavior for the Navier-Stokes equations with nonzero external forces
    Bae, Hyeong-Ohk
    Brandolese, Lorenzo
    Jin, Bum Ja
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E292 - E302
  • [35] A Liouville-type theorem for the stationary Navier-Stokes equations
    Cho, Youseung
    Choi, Jongkeun
    Yang, Minsuk
    APPLIED MATHEMATICS LETTERS, 2023, 143
  • [36] A Liouville theorem for the axially-symmetric Navier-Stokes equations
    Lei, Zhen
    Zhang, Qi S.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (08) : 2323 - 2345
  • [37] SPACE-TIME REGULARITY OF THE KOCH AND TATARU SOLUTIONS TO THE LIQUID CRYSTAL EQUATIONS
    Du, Yi
    Wang, Keyan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (06) : 3838 - 3853
  • [38] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [39] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [40] Navier-Stokes equations with external forces in Besov-Morrey spaces
    Guo, Boling
    Qin, Guoquan
    APPLICABLE ANALYSIS, 2021, 100 (12) : 2499 - 2525