We consider the Cauchy problem for the incompressible Navier–Stokes equations on the whole space R3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {R}^3$$\end{document}, with initial value u→0∈BMO-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\vec u_0\in \textrm{BMO}^{-1}$$\end{document} (as in Koch and Tataru’s theorem) and with force f→=divF\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\vec f={{\,\textrm{div}\,}}\mathbb {F}$$\end{document} where smallness of F\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}$$\end{document} ensures existence of a mild solution in absence of initial value. We study the interaction of the two solutions and discuss the existence of global solution for the complete problem (i.e. in presence of initial value and forcing term) under smallness assumptions. In particular, we discuss the interaction between Koch and Tataru solutions and Lei-Lin’s solutions (in L2F-1L1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^2\mathcal {F}^{-1}L^1$$\end{document}) or solutions in the multiplier space M(H˙t,x1/2,1↦Lt,x2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {M}(\dot{H}^{1/2,1}_{t,x}\mapsto L^2_{t,x})$$\end{document}.
机构:
Department of Mathematics, Indiana University, Bloomington,Indiana,47405, United StatesDepartment of Mathematics, Indiana University, Bloomington,Indiana,47405, United States
Foias, C.
Saut, J.C.
论文数: 0引用数: 0
h-index: 0
机构:
Département de Mathématiques, Université de Reims, B. P. 347, Reims Cedex,51062, France
Laboratoire d'Analyse Numérique, CNRS et Université Paris-Sud, Bât. 425, Orsay,91405, FranceDepartment of Mathematics, Indiana University, Bloomington,Indiana,47405, United States
Saut, J.C.
Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire,
1987,
4
(01):
: 1
-
47
机构:
Peking Univ, LAMA, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
Qian Jianzhen
Yin Hui
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China