Forces for the Navier–Stokes Equations and the Koch and Tataru Theorem

被引:0
|
作者
Pierre Gilles Lemarié-Rieusset
机构
[1] Université Paris-Saclay,LaMME, Univ Evry, CNRS
关键词
Navier–Stokes equations; Critical spaces; Parabolic Sobolev spaces; Parabolic Morrey spaces; Mild solutions; 35K55; 35Q30; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the incompressible Navier–Stokes equations on the whole space R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}, with initial value u→0∈BMO-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec u_0\in \textrm{BMO}^{-1}$$\end{document} (as in Koch and Tataru’s theorem) and with force f→=divF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec f={{\,\textrm{div}\,}}\mathbb {F}$$\end{document} where smallness of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}$$\end{document} ensures existence of a mild solution in absence of initial value. We study the interaction of the two solutions and discuss the existence of global solution for the complete problem (i.e. in presence of initial value and forcing term) under smallness assumptions. In particular, we discuss the interaction between Koch and Tataru solutions and Lei-Lin’s solutions (in L2F-1L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2\mathcal {F}^{-1}L^1$$\end{document}) or solutions in the multiplier space M(H˙t,x1/2,1↦Lt,x2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}(\dot{H}^{1/2,1}_{t,x}\mapsto L^2_{t,x})$$\end{document}.
引用
收藏
相关论文
共 50 条