Local Time-Decay of Solutions to Schrödinger Equations with Time-Periodic Potentials

被引:0
|
作者
A. Galtbayar
A. Jensen
K. Yajima
机构
[1] National University of Mongolia,School of Mathematics and Computer Science
[2] Aalborg University,Department of Mathematical Sciences
[3] University of Tokyo,Graduate School of Mathematical Sciences
[4] Gakushuin University,Department of Mathematics
来源
关键词
Floquet Hamiltonian; asymptotic expansion; Floquet operator; threshold resonances;
D O I
暂无
中图分类号
学科分类号
摘要
Let H(t)=−Δ+V(t,x) be a time-dependent Schrödinger operator on L2(R3). We assume that V(t,x) is 2π–periodic in time and decays sufficiently rapidly in space. Let U(t,0) be the associated propagator. For u0belonging to the continuous spectral subspace of L2(R3) for the Floquet operator U(2π,0), we study the behavior of U(t,0)u0as t→∞ in the topology of x-weighted spaces, in the form of asymptotic expansions. Generically the leading term is t−3/2B1u0. Here B1is a finite rank operator mapping functions of xto functions of tand x, periodic in t. If n∈Zis a threshold resonance of the corresponding Floquet Hamiltonian −i∂t+H(t), the leading behavior is t−1/2B0u0. The point spectral subspace for U(2π,0) is finite dimensional. If U(2π 0) φj= \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$e^{ - i2\pi \lambda j} $$ \end{document}φj, then U(t,0)φjrepresents a quasi-periodic solution.
引用
收藏
页码:231 / 282
页数:51
相关论文
共 50 条