Local Time-Decay of Solutions to Schrödinger Equations with Time-Periodic Potentials

被引:0
|
作者
A. Galtbayar
A. Jensen
K. Yajima
机构
[1] National University of Mongolia,School of Mathematics and Computer Science
[2] Aalborg University,Department of Mathematical Sciences
[3] University of Tokyo,Graduate School of Mathematical Sciences
[4] Gakushuin University,Department of Mathematics
来源
关键词
Floquet Hamiltonian; asymptotic expansion; Floquet operator; threshold resonances;
D O I
暂无
中图分类号
学科分类号
摘要
Let H(t)=−Δ+V(t,x) be a time-dependent Schrödinger operator on L2(R3). We assume that V(t,x) is 2π–periodic in time and decays sufficiently rapidly in space. Let U(t,0) be the associated propagator. For u0belonging to the continuous spectral subspace of L2(R3) for the Floquet operator U(2π,0), we study the behavior of U(t,0)u0as t→∞ in the topology of x-weighted spaces, in the form of asymptotic expansions. Generically the leading term is t−3/2B1u0. Here B1is a finite rank operator mapping functions of xto functions of tand x, periodic in t. If n∈Zis a threshold resonance of the corresponding Floquet Hamiltonian −i∂t+H(t), the leading behavior is t−1/2B0u0. The point spectral subspace for U(2π,0) is finite dimensional. If U(2π 0) φj= \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$e^{ - i2\pi \lambda j} $$ \end{document}φj, then U(t,0)φjrepresents a quasi-periodic solution.
引用
收藏
页码:231 / 282
页数:51
相关论文
共 50 条
  • [31] Normalized solutions for Schrödinger equations with potentials and general nonlinearities
    Liu, Yanyan
    Zhao, Leiga
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (04)
  • [32] Quantum metastability in time-periodic potentials
    Lee, CC
    Ho, CL
    ANNALS OF PHYSICS, 2005, 320 (01) : 175 - 198
  • [33] Time-periodic statistical solutions of the Navier-Stokes equations
    Fursikov, AV
    TURBULENCE MODELING AND VORTEX DYNAMICS, 1997, 491 : 123 - 147
  • [34] Multiple solutions to logarithmic Schrödinger equations with periodic potential
    Marco Squassina
    Andrzej Szulkin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 585 - 597
  • [35] Multibump solutions for discrete periodic nonlinear Schrödinger equations
    Shiwang Ma
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1413 - 1442
  • [36] The Time-Periodic Solutions to the Modified Zakharov Equations with a Quantum Correction
    Xiaoxiao Zheng
    Yadong Shang
    Huafei Di
    Mediterranean Journal of Mathematics, 2017, 14
  • [37] Solutions for Discrete Periodic Schrödinger Equations with Spectrum 0
    Minbo Yang
    Wenxiong Chen
    Yanheng Ding
    Acta Applicandae Mathematicae, 2010, 110 : 1475 - 1488
  • [38] Instabilities of exact, time-periodic solutions of the incompressible Euler equations
    Biello, JA
    Saldanha, KI
    Lebovitz, NR
    JOURNAL OF FLUID MECHANICS, 2000, 404 : 269 - 287
  • [39] GENERALIZED TIME-PERIODIC SOLUTIONS TO THE EULER EQUATIONS OF COMPRESSIBLE FLUIDS
    Georgiev, Svetlin
    LeFloch, Philippe G.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2009, 1 (03): : 413 - 426
  • [40] Time-periodic solutions to quasilinear hyperbolic systems with time-periodic boundary conditions
    Qu, Peng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 356 - 382