Formation of a-plane facets in three-dimensional hexagonal GaN structures for photonic devices

被引:0
|
作者
Seung-Hyuk Lim
Young Chul Sim
Yang-Seok Yoo
Sunghan Choi
Sangwon Lee
Yong-Hoon Cho
机构
[1] Korea Advanced Institute of Science and Technology,Department of Physics
[2] Chemistry,Department of Physics
[3] and Biology (IFM),undefined
[4] Semiconductor Materials,undefined
[5] Linköping University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Control of the growth front in three-dimensional (3D) hexagonal GaN core structures is crucial for increased performance of light-emitting diodes (LEDs), and other photonic devices. This is due to the fact that InGaN layers formed on different growth facets in 3D structures exhibit various band gaps which originate from differences in the indium-incorporation efficiency, internal polarization, and growth rate. Here, a-plane {112¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{0}}$$\end{document} } facets, which are rarely formed in hexagonal pyramid based growth, are intentionally fabricated using mask patterns and adjustment of the core growth conditions. Moreover, the growth area covered by these facets is modified by changing the growth time. The origin of the formation of a-plane {112¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{0}}$$\end{document}} facets is also discussed. Furthermore, due to a growth condition transition from a 3D core structure to an InGaN multi-quantum well, a growth front transformation (i.e., a transformation of a-plane {112¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{0}}$$\end{document}} facets to semi-polar {112¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{2}}$$\end{document}} facets) is directly observed. Based on our understanding and control of this novel growth mechanism, we can achieve efficient broadband LEDs or photovoltaic cells.
引用
收藏
相关论文
共 50 条
  • [41] Interleaving two-dimensional lattices to create three-dimensional photonic bandgap structures
    Reynolds, AL
    Arnold, JM
    IEE PROCEEDINGS-OPTOELECTRONICS, 1998, 145 (06): : 436 - 440
  • [42] Interleaving two-dimensional lattices to create three-dimensional photonic bandgap structures
    Optoelectronics Research Group, Department of Electronics and Electrical Engineering, University of Glasgow, Glascow G12 8LT, United Kingdom
    IEE Proc Optoelectron, 6 (436-440):
  • [43] Quasi-static crushing behavior of three-dimensional hexagonal reentrant structures
    Xiang Li
    Lei Xiong
    Ningchuang Li
    Junjian Fu
    Haihua Wu
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2025, 47 (6)
  • [44] Hexagonal structures for two-dimensional photonic crystals
    Cassagne, D
    Jouanin, C
    Bertho, D
    SEMICONDUCTING AND INSULATING MATERIALS, 1996: PROCEEDINGS OF THE 9TH CONFERENCE ON SEMICONDUCTING AND INSULATING MATERIALS (SIMC'96), 1996, : 341 - 344
  • [45] Optical Polarization Anisoptopy in a-plane GaN/AlGaN Quantum-well Structures
    Park, Seoung-Hwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 64 (08) : 1192 - 1195
  • [46] Optical polarization anisoptopy in a-plane GaN/AlGaN quantum-well structures
    Seoung-Hwan Park
    Journal of the Korean Physical Society, 2014, 64 : 1192 - 1195
  • [47] Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator
    Kowalevicz, AM
    Sharma, V
    Ippen, EP
    Fujimoto, JG
    Minoshima, K
    OPTICS LETTERS, 2005, 30 (09) : 1060 - 1062
  • [48] Two-photon polymerization for three-dimensional photonic devices in polymers and nanocomposites
    Jia, Baohua
    Li, Jiafang
    Gu, Min
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2007, 60 (07) : 484 - 495
  • [49] On Hydrogenated Bilayer GaN: New Stable Structures along the c-Plane, m-Plane, or a-Plane
    Lu, Anh Khoa Augustin
    Yayama, Tomoe
    Morishita, Tetsuya
    Nakanishi, Takeshi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (31): : 16888 - 16894
  • [50] Optical polarisation anisotropy in a-plane GaN/AlGaN multiple quantum well structures
    Badcock, Tom J.
    Dawson, Philip
    Kappers, Menno J.
    McAleese, Clifford
    Hollander, Jonathan L.
    Johnston, Carol F.
    Rao, Duggi V. Sridhara
    Sanchez, Ana M.
    Humphreys, Colin J.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, SUPPL 2, 2009, 6 : S523 - S526