Formation of a-plane facets in three-dimensional hexagonal GaN structures for photonic devices

被引:0
|
作者
Seung-Hyuk Lim
Young Chul Sim
Yang-Seok Yoo
Sunghan Choi
Sangwon Lee
Yong-Hoon Cho
机构
[1] Korea Advanced Institute of Science and Technology,Department of Physics
[2] Chemistry,Department of Physics
[3] and Biology (IFM),undefined
[4] Semiconductor Materials,undefined
[5] Linköping University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Control of the growth front in three-dimensional (3D) hexagonal GaN core structures is crucial for increased performance of light-emitting diodes (LEDs), and other photonic devices. This is due to the fact that InGaN layers formed on different growth facets in 3D structures exhibit various band gaps which originate from differences in the indium-incorporation efficiency, internal polarization, and growth rate. Here, a-plane {112¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{0}}$$\end{document} } facets, which are rarely formed in hexagonal pyramid based growth, are intentionally fabricated using mask patterns and adjustment of the core growth conditions. Moreover, the growth area covered by these facets is modified by changing the growth time. The origin of the formation of a-plane {112¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{0}}$$\end{document}} facets is also discussed. Furthermore, due to a growth condition transition from a 3D core structure to an InGaN multi-quantum well, a growth front transformation (i.e., a transformation of a-plane {112¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{0}}$$\end{document}} facets to semi-polar {112¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{2}}$$\end{document}} facets) is directly observed. Based on our understanding and control of this novel growth mechanism, we can achieve efficient broadband LEDs or photovoltaic cells.
引用
收藏
相关论文
共 50 条
  • [31] Optimal placement of energy dissipation devices for three-dimensional structures
    Harbin Univ of Architecture and, Civil Engineering, Harbin, China
    Eng Struct, 2 (113-125):
  • [32] Optimal placement of energy dissipation devices for three-dimensional structures
    Wu, B
    Ou, JP
    Soong, TT
    ENGINEERING STRUCTURES, 1997, 19 (02) : 113 - 125
  • [33] Formation of Three-Dimensional Structures in the Hemisphere-Cylinder
    Le Clainche, S.
    Rodriguez, D.
    Theofilis, V.
    Soria, J.
    AIAA JOURNAL, 2016, 54 (12) : 3884 - 3894
  • [34] Formation of three-dimensional structures in supported lipid bilayers
    Cambrea, Lee R.
    Hovis, Jennifer S.
    BIOPHYSICAL JOURNAL, 2007, 92 (10) : 3587 - 3594
  • [35] Full-wave characterization of three-dimensional photonic bandgap structures
    Frezza, Fabrizio
    Pajewski, Lara
    Schettini, Giuseppe
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (05) : 545 - 553
  • [36] Three-dimensional dielectric network structures with large photonic band gaps
    Maldovan, M
    Carter, WC
    Thomas, EL
    APPLIED PHYSICS LETTERS, 2003, 83 (25) : 5172 - 5174
  • [37] Three-dimensional complete photonic-band-gap structures in the visible
    Moroz, A
    PHYSICAL REVIEW LETTERS, 1999, 83 (25) : 5274 - 5277
  • [38] Ultrafast laser processing:: new options for three-dimensional photonic structures
    Nolte, S
    Will, M
    Burghoff, J
    Tünnermann, A
    JOURNAL OF MODERN OPTICS, 2004, 51 (16-18) : 2533 - 2542
  • [39] Facet Control and Material Redistribution in GaN Growth on Three-Dimensional Structures
    Clavero, Irene Manglano
    Margenfeld, Christoph
    Hartmann, Jana
    Waag, Andreas
    CRYSTAL GROWTH & DESIGN, 2023, 23 (01) : 263 - 272
  • [40] Study of bandgap characteristics of three-dimensional photonic crystal with typical structures
    Yan, Xin
    Liang, Lan-Ju
    Zhang, Xing-Fang
    Xue, Dong
    Wei, De-Quan
    OPTIK, 2015, 126 (18): : 1613 - 1616