Formation of a-plane facets in three-dimensional hexagonal GaN structures for photonic devices

被引:0
|
作者
Seung-Hyuk Lim
Young Chul Sim
Yang-Seok Yoo
Sunghan Choi
Sangwon Lee
Yong-Hoon Cho
机构
[1] Korea Advanced Institute of Science and Technology,Department of Physics
[2] Chemistry,Department of Physics
[3] and Biology (IFM),undefined
[4] Semiconductor Materials,undefined
[5] Linköping University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Control of the growth front in three-dimensional (3D) hexagonal GaN core structures is crucial for increased performance of light-emitting diodes (LEDs), and other photonic devices. This is due to the fact that InGaN layers formed on different growth facets in 3D structures exhibit various band gaps which originate from differences in the indium-incorporation efficiency, internal polarization, and growth rate. Here, a-plane {112¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{0}}$$\end{document} } facets, which are rarely formed in hexagonal pyramid based growth, are intentionally fabricated using mask patterns and adjustment of the core growth conditions. Moreover, the growth area covered by these facets is modified by changing the growth time. The origin of the formation of a-plane {112¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{0}}$$\end{document}} facets is also discussed. Furthermore, due to a growth condition transition from a 3D core structure to an InGaN multi-quantum well, a growth front transformation (i.e., a transformation of a-plane {112¯0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{0}}$$\end{document}} facets to semi-polar {112¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf{11}}\bar{{\bf{2}}}{\bf{2}}$$\end{document}} facets) is directly observed. Based on our understanding and control of this novel growth mechanism, we can achieve efficient broadband LEDs or photovoltaic cells.
引用
收藏
相关论文
共 50 条
  • [1] Formation of a-plane facets in three-dimensional hexagonal GaN structures for photonic devices
    Lim, Seung-Hyuk
    Sim, Young Chul
    Yoo, Yang-Seok
    Choi, Sunghan
    Lee, Sangwon
    Cho, Yong-Hoon
    SCIENTIFIC REPORTS, 2017, 7
  • [2] Three-dimensional GaN photonic crystals
    Gajiev, G
    Golubev, VG
    Kurdyukov, DA
    Pevtsov, AB
    Selkin, AV
    Travnikov, VV
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2002, 231 (01): : R7 - R9
  • [3] Impacts of specific element-treated three-dimensional GaN layer on characteristics of nonpolar a-plane GaN film
    Xu, Yifeng
    Zhang, Xiong
    Fang, Ruiting
    Luo, Xuguang
    Chen, Lin
    Xu, Shenyu
    Lou, Zhiyi
    Cui, Jia
    Hu, Guohua
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2023, 41 (05):
  • [4] Formation of in situ HVPE a-plane GaN nanodots: effects on the structural properties of a-plane GaN templates
    Lee, Moonsang
    Yang, Mino
    Wi, Jung-Sub
    Park, Sungsoo
    CRYSTENGCOMM, 2018, 20 (28): : 4036 - 4041
  • [5] Chalcogenide three-dimensional photonic structures
    Feigel, A
    Kotler, Z
    Sfez, B
    Arsh, A
    Klebanov, M
    Lyubin, V
    INTEGRATED OPTICS DEVICES V, 2001, 4277 : 249 - 251
  • [6] Three-dimensional GaN photonic crystals for visible spectral range
    Gajiev, G
    Golubev, VG
    Kurdyukov, DA
    Pevtsov, AB
    Travnikov, VV
    10TH INTERNATIONAL SYMPOSIUM ON NANOSTRUCTURES: PHYSICS AND TECHNOLOGY, 2003, 5023 : 123 - 126
  • [7] Semiconductor three-dimensional and two-dimensional photonic crystals and devices
    Noda, S
    Imada, M
    Okano, M
    Ogawa, S
    Mochizuki, M
    Chutinan, A
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (07) : 726 - 735
  • [8] Fast and Efficient Analysis and Design of Three-Dimensional Photonic Crystal Structures for Functional Dispersive Devices
    Badieirostami, Majid
    Momeni, Babak
    Adibi, Ali
    Chen, Vincent W.
    Perry, Joseph W.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 1501 - +
  • [9] Three-dimensional photonic band gaps in woven structures
    Tsai, YC
    Shung, KWK
    Pendry, JB
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (04) : 753 - 760
  • [10] On coherent structures in a three-dimensional transitional plane jet
    Kun Luo
    Jie Yan
    JianRen Fan
    KeFa Cen
    Science in China Series E: Technological Sciences, 2008, 51