Generalized combination complex synchronization of new hyperchaotic complex Lü-like systems

被引:0
|
作者
Cuimei Jiang
Shutang Liu
机构
[1] Shandong University,College of Control Science and Engineering
关键词
hyperchaotic complex systems; chaotic attractors; Lyapunov exponents; generalized combination complex synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a new hyperchaotic complex system is presented and its dynamical properties are discussed by phase portraits, bifurcation diagrams, and the Lyapunov exponents spectra. Noticeably, based on two drive complex systems and one response complex system with different dimensions, we propose generalized combination complex synchronization and design a general controller. Additionally, we investigate generalized combination complex synchronization between real systems and complex systems via two complex scaling matrices. Two examples, which include two chaotic complex systems driving one new hyperchaotic complex system and two new hyperchaotic complex systems driving one chaotic real system, are shown to demonstrate the effectiveness and feasibility of the schemes.
引用
收藏
相关论文
共 50 条
  • [21] Complex generalized synchronization of complex-variable chaotic systems
    Xiu Zhao
    Jian Liu
    Fangfang Zhang
    Cuimei Jiang
    The European Physical Journal Special Topics, 2021, 230 : 2035 - 2041
  • [22] Complex generalized synchronization of complex-variable chaotic systems
    Zhao, Xiu
    Liu, Jian
    Zhang, Fangfang
    Jiang, Cuimei
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (7-8): : 2035 - 2041
  • [23] Lag synchronization of hyperchaotic complex nonlinear systems via passive control
    Mahmoud, Emad E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (04): : 1429 - 1436
  • [24] Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems
    Mahmoud, Gamal M.
    Mahmoud, Emad E.
    NONLINEAR DYNAMICS, 2010, 61 (1-2) : 141 - 152
  • [25] The boundary of generalized synchronization in complex dynamic systems
    Koronovskii, A. A.
    Moskalenko, O. I.
    Sel'skii, A. O.
    Hramov, A. E.
    TECHNICAL PHYSICS LETTERS, 2015, 41 (07) : 683 - 686
  • [26] The boundary of generalized synchronization in complex dynamic systems
    A. A. Koronovskii
    O. I. Moskalenko
    A. O. Sel’skii
    A. E. Hramov
    Technical Physics Letters, 2015, 41 : 683 - 686
  • [27] Phase and antiphase synchronization of two identical hyperchaotic complex nonlinear systems
    Gamal M. Mahmoud
    Emad E. Mahmoud
    Nonlinear Dynamics, 2010, 61 : 141 - 152
  • [28] Generalized complex projective synchronization of chaotic complex systems with unknown parameters
    Ban, Jaepil
    Lee, Jinwoo
    Won, Sangchul
    2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, : 672 - 677
  • [29] Coexistence of generalized synchronization and inverse generalized synchronization between chaotic and hyperchaotic systems
    Gasri, Ahlem
    Ouannas, Adel
    Ojo, Kayode S.
    Viet-Thanh Pham
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (04): : 583 - 598
  • [30] Complex Generalized Synchronization and Parameter Identification of Nonidentical Nonlinear Complex Systems
    Wang, Shibing
    Wang, Xingyuan
    Han, Bo
    PLOS ONE, 2016, 11 (03):