The boundary of generalized synchronization in complex dynamic systems

被引:0
|
作者
A. A. Koronovskii
O. I. Moskalenko
A. O. Sel’skii
A. E. Hramov
机构
[1] Saratov State University,
[2] Yury Gagarin State Technical University of Saratov,undefined
来源
Technical Physics Letters | 2015年 / 41卷
关键词
Technical Physic Letter; Coupling Parameter; Couple Oscillator; Chaotic Oscillator; Generalize Synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
The character of a boundary of the domain of generalized synchronization (GS) regime has been studied for a system of three chaotic oscillators, two which are unidirectionally coupled with the third. It is established that the position of the GS boundary on the plane of coupling parameters is determined by the detuning of frequencies of the interacting chaotic oscillators. The character of this arrangement is explained in the framework of the modified system approach.
引用
收藏
页码:683 / 686
页数:3
相关论文
共 50 条
  • [1] The boundary of generalized synchronization in complex dynamic systems
    Koronovskii, A. A.
    Moskalenko, O. I.
    Sel'skii, A. O.
    Hramov, A. E.
    TECHNICAL PHYSICS LETTERS, 2015, 41 (07) : 683 - 686
  • [2] Intermittency Near the Generalized Synchronization Boundary in Complex Attractor Topology Systems
    Khanadeev V.A.
    Moskalenko O.I.
    Koronovskii A.A.
    Bulletin of the Russian Academy of Sciences: Physics, 2021, 85 (02) : 192 - 195
  • [3] Intermittency at the Boundary of Generalized Synchronization in Mutually Coupled Systems with Complex Attractor Topology
    O. I. Moskalenko
    A. A. Koronovskii
    V. A. Khanadeev
    Technical Physics, 2019, 64 : 302 - 305
  • [4] Intermittency at the Boundary of Generalized Synchronization in Mutually Coupled Systems with Complex Attractor Topology
    Moskalenko, O. I.
    Koronovskii, A. A.
    Khanadeev, V. A.
    TECHNICAL PHYSICS, 2019, 64 (03) : 302 - 305
  • [5] On existence of multistability near the boundary of generalized synchronization in unidirectionally coupled systems with complex topology of attractor
    Moskalenko, O. I.
    Evstifeev, E. V.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2022, 30 (06): : 676 - 684
  • [6] Investigating the Possible Existence of Multistability near the Boundary of Generalized Synchronization in Systems with Complex Attractor Topology
    Evstifeev E.V.
    Moskalenko O.I.
    Bulletin of the Russian Academy of Sciences: Physics, 2023, 87 (01) : 97 - 100
  • [7] Complex generalized synchronization of complex-variable chaotic systems
    Xiu Zhao
    Jian Liu
    Fangfang Zhang
    Cuimei Jiang
    The European Physical Journal Special Topics, 2021, 230 : 2035 - 2041
  • [8] Complex generalized synchronization of complex-variable chaotic systems
    Zhao, Xiu
    Liu, Jian
    Zhang, Fangfang
    Jiang, Cuimei
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (7-8): : 2035 - 2041
  • [9] The existence of generalized synchronization of chaotic systems in complex networks
    Hu, Aihua
    Xu, Zhenyuan
    Guo, Liuxiao
    CHAOS, 2010, 20 (01)
  • [10] Method for characteristic phase detection in systems with complex topology of attractor being near the boundary of generalized synchronization
    Moskalenko, O., I
    Koronovskii, A. A.
    Khanadeev, V. A.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2020, 28 (03): : 274 - 281