Leader Election in Well-Connected Graphs

被引:0
|
作者
Seth Gilbert
Peter Robinson
Suman Sourav
机构
[1] National University of Singapore,
[2] Augusta University,undefined
[3] Singapore University of Technology and Design,undefined
来源
Algorithmica | 2023年 / 85卷
关键词
Leader election; Conductance; Mixing time; Random walks; Congest model;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we look at the problem of randomized leader election in synchronous distributed networks with a special focus on the message complexity. We provide an algorithm that solves the implicit version of leader election (where non-leader nodes need not be aware of the identity of the leader) in any general network with O(nlog7/2n·tmix)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n} \log ^{7/2} n \cdot t_{mix})$$\end{document} messages and in O(tmixlog2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(t_{mix}\log ^2 n)$$\end{document} time, where n is the number of nodes and tmix\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{mix}$$\end{document} refers to the mixing time of a random walk in the network graph G. For several classes of well-connected networks (that have a large conductance or alternatively small mixing times e.g., expanders, hypercubes, etc), the above result implies extremely efficient (sublinear running time and messages) leader election algorithms. Correspondingly, we show that any substantial improvement is not possible over our algorithm, by presenting an almost matching lower bound for randomized leader election. We show that Ω(n/ϕ3/4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\sqrt{n}/\phi ^{3/4})$$\end{document} messages are needed for any leader election algorithm that succeeds with probability at least 1-o(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-o(1)$$\end{document}, where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} refers to the conductance of a graph. To the best of our knowledge, this is the first work that shows a dependence between the time and message complexity to solve leader election and the connectivity of the graph G, which is often characterized by the graph’s conductance ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. Apart from the Ω(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (m)$$\end{document} bound in Kutten et al. (J ACM 62(1):7:1–7:27, 2015) (where m denotes the number of edges of the graph), this work also provides one of the first non-trivial lower bounds for leader election in general networks.
引用
收藏
页码:1029 / 1066
页数:37
相关论文
共 50 条
  • [41] The well-connected community: A networking approach to community development
    Geddes, M
    JOURNAL OF SOCIAL POLICY, 2005, 34 : 170 - 171
  • [42] From Louvain to Leiden: guaranteeing well-connected communities
    Traag, V. A.
    Waltman, L.
    van Eck, N. J.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [43] LOCAL CONTEXT AND INNOVATION DIFFUSION IN A WELL-CONNECTED WORLD
    ORMROD, RK
    ECONOMIC GEOGRAPHY, 1990, 66 (02) : 109 - 122
  • [44] Being Well-Connected: Starting and Maintaining Successful Partnerships
    Goldman, Karen Denard
    Schmalz, Kathleen Jahn
    HEALTH PROMOTION PRACTICE, 2008, 9 (01) : 5 - 8
  • [45] The Well-Connected Community: a Networking Approach to Community Development
    Williams, Colin C.
    LOCAL ECONOMY, 2006, 21 (02): : 237 - 238
  • [46] Dense and well-connected subgraph detection in dual networks
    Chen, Tianyi
    Bonchi, Francesco
    Garcia-Soriano, David
    Miyauchi, Atsushi
    Tsourakakis, Charalampos E.
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 361 - 369
  • [47] Well-Connected Domains: Towards an Entangled Ottoman History
    Gurkan, Emrah Safa
    OSMANLI ARASTIRMALARI-THE JOURNAL OF OTTOMAN STUDIES, 2015, (46): : 342 - 346
  • [48] Leader election in hyper-butterfly graphs
    Shi, W
    Srimani, PK
    NETWORK AND PARALLEL COMPUTING, PROCEEDINGS, 2004, 3222 : 292 - 299
  • [49] On varieties singly generated by a well-connected FLew-algebra
    Aguzzoli, Stefano
    Bianchi, Matteo
    FUZZY SETS AND SYSTEMS, 2017, 320 : 60 - 63
  • [50] Leveraging feature generalization and decomposition to compute a well-connected midsurface
    Yogesh H. Kulkarni
    Anil Sahasrabudhe
    Mukund Kale
    Engineering with Computers, 2017, 33 : 159 - 170